A Universal Hybrid Precoding Scheme for Massive MIMO Communications

被引:2
作者
Feng, Yimeng [1 ]
Jiang, Yi [1 ]
Varanasi, Mahesh K. [2 ]
机构
[1] Fudan Univ, Sch Informat Sci & Technol, Key Lab Informat Sci Electromagnet Waves MoE, Shanghai 200433, Peoples R China
[2] Univ Colorado, Dept Elect Comp & Energy Engn, Boulder, CO 80309 USA
基金
中国国家自然科学基金;
关键词
hybrid beamforming; massive MIMO; phase-shifter network; switch network; BEAMFORMING METHODS; ANALOG; DESIGN; ARCHITECTURES;
D O I
10.23919/JCC.2022.00.038
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
Based on an analog radio frequency (RF) network, hybrid precoding (HPC) for massive MIMO can achieve very high spectral efficiencies with moderate hardware cost and power consumption. Despite the extensive research efforts in recent years, the practioners are still looking for HPCs that are efficient and easy-to-implement. In this paper, we present a new method termed as the universal hybrid precoding (UHP), which is nearly optimal, computationally efficient, and applicable to various types of RF network (thus, the name universal): the components of the network can be phase shifters (with finite or infinite resolutions), switches, or their combinations; the topology of the network can be fully-connected or partially-connected. Besides the standard UHP, we also propose a simplified version termed as sUHP to trade a negligible performance loss for much reduced computational complexity. The analysis shows that the computational complexity of the proposed UHP/sUHP is one to two orders of magnitude lower than the state-of-the-art methods. Simulation results verify the (near-) optimality of the proposed UHP scheme for various forms of the analog networks.
引用
收藏
页码:160 / 178
页数:19
相关论文
共 33 条
[1]   What Will 5G Be? [J].
Andrews, Jeffrey G. ;
Buzzi, Stefano ;
Choi, Wan ;
Hanly, Stephen V. ;
Lozano, Angel ;
Soong, Anthony C. K. ;
Zhang, Jianzhong Charlie .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2014, 32 (06) :1065-1082
[2]   On the Number of RF Chains and Phase Shifters, and Scheduling Design With Hybrid Analog-Digital Beamforming [J].
Bogale, Tadilo Endeshaw ;
Le, Long Bao ;
Haghighat, Afshin ;
Vandendorpe, Luc .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2016, 15 (05) :3311-3326
[3]  
Dai LL, 2015, IEEE ICC, P1334, DOI 10.1109/ICC.2015.7248508
[4]   Spatially Sparse Precoding in Millimeter Wave MIMO Systems [J].
El Ayach, Omar ;
Rajagopal, Sridhar ;
Abu-Surra, Shadi ;
Pi, Zhouyue ;
Heath, Robert W., Jr. .
IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2014, 13 (03) :1499-1513
[5]  
Foschini G. J., 1996, Bell Labs Technical Journal, V1, P41, DOI 10.1002/bltj.2015
[6]   Energy-Efficient Hybrid Analog and Digital Precoding for MmWave MIMO Systems With Large Antenna Arrays [J].
Gao, Xinyu ;
Dai, Linglong ;
Han, Shuangfeng ;
I, Chih-Lin ;
Heath, Robert W., Jr. .
IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2016, 34 (04) :998-1009
[7]  
Golub G. H., 1996, MATRIX COMPUTATIONS
[8]   DFT-Based Hybrid Beamforming Multiuser Systems: Rate Analysis and Beam Selection [J].
Han, Yu ;
Jin, Shi ;
Zhang, Jun ;
Zhang, Jiayi ;
Wong, Kai-Kit .
IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2018, 12 (03) :514-528
[9]   DFT codebook-based hybrid precoding for multiuser mmWave massive MIMO systems [J].
Huang, Yu ;
Liu, Chen ;
Song, Yunchao ;
Yu, Xiaolei .
EURASIP JOURNAL ON ADVANCES IN SIGNAL PROCESSING, 2020, 2020 (01)
[10]   A Family of Hybrid Analog-Digital Beamforming Methods for Massive MIMO Systems [J].
Ioushua, Shahar Stein ;
Eldar, Yonina C. .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (12) :3243-3257