On the maximal numerical range of the bimultiplication M2,A,B

被引:0
作者
Baghdad, Abderrahim [1 ]
Kaadoud, Mohamed Chraibi [1 ]
机构
[1] Cadi Ayyad Univ, Dept Math, Fac Sci Semlalia, Marrakech, Morocco
关键词
Numerical range; maximal numerical range; normal operator; hyponormal operator; elementary operators;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B(H) denote the algebra of all bounded linear operators acting on a complex Hilbert space H. For A, B is an element of B(H), define the bimultiplication operator M-2,M-A,M-B on the class of Hilbert-Schmidt operators by M-2,M-A,M-B(X) = AXB. In this paper, we show that if B is normal, then co(W-0(A)W-0(B)) subset of W-0(M-2,M-A,M-B), where co stands for the convex hull and W-0(.) denotes the maximal numerical range. If in addition, A is hyponormal, this inclusion becomes an equality. Some remarks about the maximal numerical range of the generalized derivation delta(2 A,B) on the class of Hilbert-Schmidt operators are also given.
引用
收藏
页码:4907 / 4914
页数:8
相关论文
共 17 条
  • [1] A new class intermediate between hyponormal operators and normaloid operators
    Baghdad, Abderrahim
    Kaadoud, Mohamed Chraibi
    [J]. LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15) : 2926 - 2932
  • [2] BONSALL F. F., 1971, NUMERICAL RANGES OPE, V2
  • [3] Bonsall F. F., 1973, Numerical ranges II, V10
  • [4] FIALKOW L, 1992, STRUCTURAL PROPERTIE, P55
  • [5] Fong, 1979, ACTA SCI MATH, V41
  • [6] Numerical Radii for Tensor Products of Operators
    Gau, Hwa-Long
    Wang, Kuo-Zhong
    Wu, Pei Yuan
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2014, 78 (03) : 375 - 382
  • [7] Gustafson K.E., 1997, NUMERICAL RANGE FIEL, DOI DOI 10.1007/978-1-4613-8498-4
  • [8] HALMOS P. R., 1967, HILBERT SPACE PROBLE
  • [9] Numeric domain of the product and the bimultiplication M2,A,B
    Kaadoud, MC
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (08) : 2421 - 2428
  • [10] Kaadoud MC., 2002, EXTRACTA MATH, V17