Riemann-Roch theorems via deformation quantization, I

被引:34
作者
Bressler, P
Nest, R
Tsygan, B
机构
[1] Inst Hautes Rech Sci, Bures Sur Yvette, France
[2] Math Inst, DK-2100 Copenhagen, Denmark
[3] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.2000.1977
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We deduce the Riemann Roch tape formula expressing the microlocal Euler class of a perfect complex of L-modules in terms of the Chern character of the associated symbol complex and the Todd class of the manifold from the Riemann-Roch type theorem for periodic cyclic cocycles of a symplectic deformation quantization, The proof of the latter is contained in the Sequel to this paper. (C) 2002 Elsevier Science (USA).
引用
收藏
页码:1 / 25
页数:25
相关论文
共 13 条
  • [1] [Anonymous], SELECTA MATH
  • [2] DEFORMATION THEORY AND QUANTIZATION .1. DEFORMATIONS OF SYMPLECTIC STRUCTURES
    BAYEN, F
    FLATO, M
    FRONSDAL, C
    LICHNEROWICZ, A
    STERNHEIMER, D
    [J]. ANNALS OF PHYSICS, 1978, 111 (01) : 61 - 110
  • [3] BJORK JE, 1993, ANAL MODULES APPL
  • [4] BRYLINSKI JL, 1987, LECT NOTES MATH, V1271, P33
  • [5] Fedosov B., 1996, MATH TOPICS, V9
  • [6] FEIGIN B, P WINT SCH 2 WINT SC
  • [7] FEIGIN B, 1983, FUNCT ANAL APPL, V17
  • [8] KASHIWARA M., 1990, GRUNDLEHREN MATH WIS, V292
  • [9] LODAY JL, 1993, CYCLIC HOMOLOGY
  • [10] ALGEBRAIC INDEX THEOREM
    NEST, R
    TSYGAN, B
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1995, 172 (02) : 223 - 262