Gauge-invariant coherent states for loop quantum gravity: I. Abelian gauge groups

被引:32
作者
Bahr, Benjamin [1 ]
Thiemann, Thomas [1 ,2 ]
机构
[1] Albert Einstein Inst, MPI Gravitationsphys, D-14467 Golm, Germany
[2] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
关键词
CURVED SPACETIME LIMIT; PHASE-SPACE; SEMICLASSICAL APPROXIMATIONS; FIELD; AQG; GCS; MECHANICS; SYSTEMS; QGR; QFT;
D O I
10.1088/0264-9381/26/4/045011
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we investigate the properties of gauge-invariant coherent states for loop quantum gravity, for the gauge group U(1). This is done by projecting the corresponding complexifier coherent states defined by Thiemann and Winklerto the gauge- invariant Hilbert space. This being the first step toward constructing physical coherent states, we arrive at a set of gauge- invariant states that approximate well the gauge-invariant degrees of freedom of Abelian loop quantum gravity (LQG). Furthermore, these states turn out to encode explicit information about the graph topology, and show the same pleasant peakedness properties known from the gauge-variant complexifier coherent states. In a companion paper, we will turn to the more sophisticated case of SU(2).
引用
收藏
页数:22
相关论文
共 28 条
[1]   QUANTIZATION OF DIFFEOMORPHISM INVARIANT THEORIES OF CONNECTIONS WITH LOCAL DEGREES OF FREEDOM [J].
ASHTEKAR, A ;
LEWANDOWSKI, J ;
MAROLF, D ;
MOURAO, J ;
THIEMANN, T .
JOURNAL OF MATHEMATICAL PHYSICS, 1995, 36 (11) :6456-6493
[2]   Comment on 'semiclassical approximations in phase space with coherent states' [J].
Baranger, M ;
de Aguiar, MAM ;
Korsch, HJ .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (37) :9795-9796
[3]   Reply to 'Comment on "Semiclassical approximations in phase space with coherent states"' [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2002, 35 (44) :9493-9497
[4]   Semiclassical approximations in phase space with coherent states [J].
Baranger, M ;
de Aguiar, MAM ;
Keck, F ;
Korsch, HJ ;
Schellhaass, B .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2001, 34 (36) :7227-7286
[5]  
Biggs N., 1993, ALGEBRAIC GRAPH THEO
[6]   Algebraic quantum gravity (AQG): I. Conceptual setup [J].
Giesel, K. ;
Thiemann, T. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (10) :2465-2497
[7]   Algebraic quantum gravity (AQG): III. Semiclassical perturbation theory [J].
Giesel, K. ;
Thiemann, T. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (10) :2565-2588
[8]   Algebraic quantum gravity (AQG): II. Semiclassical analysis [J].
Giesel, K. ;
Thiemann, T. .
CLASSICAL AND QUANTUM GRAVITY, 2007, 24 (10) :2499-2564
[9]   COHERENT AND INCOHERENT STATES OF RADIATION FIELD [J].
GLAUBER, RJ .
PHYSICAL REVIEW, 1963, 131 (06) :2766-+
[10]   The inverse Segal-Bargmann transform for compact Lie groups [J].
Hall, BC .
JOURNAL OF FUNCTIONAL ANALYSIS, 1997, 143 (01) :98-116