Bayesian Priors from Loss Matching

被引:4
|
作者
Brown, Philip J. [1 ]
Walker, Stephen G. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
关键词
Conjugate prior; Dirichlet process; Kullback-Leibler divergence; loss function; model choice; -open; prior distribution; self-information loss; POSTERIOR DISTRIBUTIONS; INFORMATION; PROBABILITY; INFERENCE; BEHAVIOR;
D O I
10.1111/j.1751-5823.2011.00176.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the construction of prior probability measures for parametric families of densities where the framework is such that only beliefs or knowledge about a single observable data point is required. We pay particular attention to the parameter which minimizes a measure of divergence to the distribution providing the data. The prior distribution reflects this attention and we discuss the application of the Bayes rule from this perspective. Our framework is fundamentally non-parametric and we are able to interpret prior distributions on the parameter space using ideas of matching loss functions, one of which is coming from the data model and the other from the prior.
引用
收藏
页码:60 / 82
页数:23
相关论文
共 50 条
  • [21] Choosing priors in Bayesian ecological models by simulating from the prior predictive distribution
    Wesner, Jeff S.
    Pomeranz, Justin P. F.
    ECOSPHERE, 2021, 12 (09):
  • [22] An Investigation of Likelihoods and Priors for Bayesian Endmember Estimation
    Zare, Alina
    Gader, Paul
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, 2010, 1305 : 311 - 318
  • [23] Bayesian learning with multiple priors and nonvanishing ambiguity
    Zimper, Alexander
    Ma, Wei
    ECONOMIC THEORY, 2017, 64 (03) : 409 - 447
  • [24] Can natural selection encode Bayesian priors?
    Ramirez, Juan Camilo
    Marshall, James A. R.
    JOURNAL OF THEORETICAL BIOLOGY, 2017, 426 : 57 - 66
  • [25] Learning Priors for Bayesian Computations in the Nervous System
    Berniker, Max
    Voss, Martin
    Kording, Konrad
    PLOS ONE, 2010, 5 (09): : 1 - 9
  • [26] Deep generator priors for Bayesian seismic inversion
    Fang, Zhilong
    Fang, Hongjian
    Demanet, Laurent
    MACHINE LEARNING IN GEOSCIENCES, 2020, 61 : 179 - 216
  • [27] Bayesian modeling via discrete nonparametric priors
    Marta Catalano
    Antonio Lijoi
    Igor Prünster
    Tommaso Rigon
    Japanese Journal of Statistics and Data Science, 2023, 6 : 607 - 624
  • [28] On Default Priors for Robust Bayesian Estimation with Divergences
    Nakagawa, Tomoyuki
    Hashimoto, Shintaro
    ENTROPY, 2021, 23 (01) : 1 - 19
  • [29] BAYESIAN ANALYSIS OF SHAPE-RESTRICTED FUNCTIONS USING GAUSSIAN PROCESS PRIORS
    Lenk, Peter J.
    Choi, Taeryon
    STATISTICA SINICA, 2017, 27 (01) : 43 - 69
  • [30] Bayesian Inference under Small Sample Sizes Using General Noninformative Priors
    He, Jingjing
    Wang, Wei
    Huang, Min
    Wang, Shaohua
    Guan, Xuefei
    MATHEMATICS, 2021, 9 (21)