Bayesian Priors from Loss Matching

被引:4
|
作者
Brown, Philip J. [1 ]
Walker, Stephen G. [1 ]
机构
[1] Univ Kent, Sch Math Stat & Actuarial Sci, Canterbury, Kent, England
关键词
Conjugate prior; Dirichlet process; Kullback-Leibler divergence; loss function; model choice; -open; prior distribution; self-information loss; POSTERIOR DISTRIBUTIONS; INFORMATION; PROBABILITY; INFERENCE; BEHAVIOR;
D O I
10.1111/j.1751-5823.2011.00176.x
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with the construction of prior probability measures for parametric families of densities where the framework is such that only beliefs or knowledge about a single observable data point is required. We pay particular attention to the parameter which minimizes a measure of divergence to the distribution providing the data. The prior distribution reflects this attention and we discuss the application of the Bayes rule from this perspective. Our framework is fundamentally non-parametric and we are able to interpret prior distributions on the parameter space using ideas of matching loss functions, one of which is coming from the data model and the other from the prior.
引用
收藏
页码:60 / 82
页数:23
相关论文
共 50 条
  • [1] Bayesian modeling via discrete nonparametric priors
    Catalano, Marta
    Lijoi, Antonio
    Prunster, Igor
    Rigon, Tommaso
    JAPANESE JOURNAL OF STATISTICS AND DATA SCIENCE, 2023, 6 (02) : 607 - 624
  • [2] BAYESIAN INVERSE PROBLEMS WITH GAUSSIAN PRIORS
    Knapik, B. T.
    van der Vaart, A. W.
    van Zanten, J. H.
    ANNALS OF STATISTICS, 2011, 39 (05) : 2626 - 2657
  • [3] Predictive construction of priors in Bayesian nonparametrics
    Fortini, Sandra
    Petrone, Sonia
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2012, 26 (04) : 423 - 449
  • [4] Bayesian priors are encoded independently from likelihoods in human multisensory perception
    Beierholm, Ulrik R.
    Quartz, Steven R.
    Shams, Ladan
    JOURNAL OF VISION, 2009, 9 (05):
  • [5] Stability of Gibbs Posteriors from the Wasserstein Loss for Bayesian Full
    Dunlop, Matthew M.
    Yang, Yunan
    SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2021, 9 (04) : 1499 - 1526
  • [6] Bayesian persuasion with heterogeneous priors
    Alonso, Ricardo
    Camara, Odilon
    JOURNAL OF ECONOMIC THEORY, 2016, 165 : 672 - 706
  • [7] Bayesian clustering with priors on partitions
    Swartz, Tim B.
    STATISTICA NEERLANDICA, 2011, 65 (04) : 371 - 386
  • [8] Shrinkage priors for Bayesian prediction
    Komaki, Fumiyasu
    ANNALS OF STATISTICS, 2006, 34 (02) : 808 - 819
  • [9] Bayesian analysis in multivariate regression models with conjugate priors
    Arashi, M.
    Iranmanesh, Anis
    Norouzirad, M.
    Jenatabadi, Hashem Salarzadeh
    STATISTICS, 2014, 48 (06) : 1324 - 1334
  • [10] Laplace priors and spatial inhomogeneity in Bayesian inverse problems
    Agapiou, Sergios
    Wang, Sven
    BERNOULLI, 2024, 30 (02) : 878 - 910