RANDOM AND DETERMINISTIC TRIANGLE GENERATION OF THREE-DIMENSIONAL CLASSICAL GROUPS III

被引:1
作者
Marion, Claude [1 ]
机构
[1] Hebrew Univ Jerusalem, Inst Math, IL-91904 Jerusalem, Israel
基金
英国工程与自然科学研究理事会;
关键词
Classical groups; Finite simple groups; Triangle groups; 20P05;
D O I
10.1080/00927872.2011.638352
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p(1), p(2), p(3) be primes. This is the final paper in a series of three on the (p(1), p(2), p(3))-generation of the finite projective special unitary and linear groups PSU3(p(n)), PSL3(p(n)), where we say a noncyclic group is (p(1), p(2), p(3))-generated if it is a homomorphic image of the triangle group T-p1, p(2), p(3) . This article is concerned with the case where p(1)=2 and p(2)p(3). We determine for any primes p(2)p(3) the prime powers p(n) such that PSU3(p(n)) (respectively, PSL3(p(n))) is a quotient of T=T-2,T- p2, p(3) . We also derive the limit of the probability that a randomly chosen homomorphism in Hom(T, PSU3(p(n))) (respectively, Hom(T, PSL3(p(n)))) is surjective as p(n) tends to infinity.
引用
收藏
页码:926 / 954
页数:29
相关论文
共 3 条
[1]  
[Anonymous], 1981, GLASGOW MATH J
[2]  
Marion C, 2013, COMMUN ALGEBRA, V41, P797, DOI 10.1080/00927872.2011.638350
[3]   Triangle groups and PSL2(q) [J].
Marion, Claude .
JOURNAL OF GROUP THEORY, 2009, 12 (05) :689-708