Noetherian Subrings

被引:0
作者
不详
机构
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1054 / 1055
页数:2
相关论文
共 50 条
[21]   CHERN SUBRINGS [J].
Kameko, Masaki ;
Yagita, Nobuaki .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (01) :367-373
[22]   Commutative rings of prime characteristic in which subrings of monogenic subrings are monogenic [J].
Freidman, P. A. ;
Hmel'nitskii, I. L. .
INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2007, 17 (5-6) :1013-1019
[23]   MUST R BE NOETHERIAN IF RG IS NOETHERIAN [J].
BREWER, JW ;
RUTTER, EA .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (09) :969-979
[24]   THE NILPOTENCE OF NIL SUBRINGS [J].
DRAZIN, MP .
AMERICAN JOURNAL OF MATHEMATICS, 1957, 79 (01) :67-72
[25]   Conch maximal subrings [J].
Azarang, Alborz .
COMMUNICATIONS IN ALGEBRA, 2022, 50 (03) :1267-1282
[26]   Subrings of direct sums [J].
McCoy, NH .
AMERICAN JOURNAL OF MATHEMATICS, 1938, 60 :374-382
[27]   NOETHERIAN PAIRS AND HEREDITARILY NOETHERIAN-RINGS [J].
GILMER, R ;
HEINZER, W .
ARCHIV DER MATHEMATIK, 1983, 41 (02) :131-138
[28]   NOETHERIAN AND NON-NOETHERIAN COMMUTATIVE RINGS [J].
HEINZER, WJ .
NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01) :264-&
[29]   STRUCTURE OF FUZZY SUBRINGS [J].
ESLAMI, E ;
MORDESON, JN .
INFORMATION SCIENCES, 1994, 76 (1-2) :57-65
[30]   Ideals contained in subrings [J].
Bell, HE ;
Klein, AA .
HOUSTON JOURNAL OF MATHEMATICS, 1998, 24 (01) :1-8