Plastic anisotropy evolution of SS316L and modeling for novel cruciform specimen

被引:20
作者
Mamros, Elizabeth M. [1 ]
Mayer, Sarah M. [1 ]
Banerjee, Dilip K. [2 ]
Iadicola, Mark A. [2 ]
Kinsey, Brad L. [1 ]
Ha, Jinjin [1 ]
机构
[1] Univ New Hampshire, Dept Mech Engn, 33 Acad Way, Durham, NH 03824 USA
[2] Natl Inst Stand & Technol NIST, Mat Measurement Lab, 100 Bur Dr,STOP 8550, Gaithersburg, MD 20899 USA
基金
美国国家科学基金会;
关键词
Plastic anisotropy; Constitutive modeling; Mechanical testing; Design of experiment; Finite element simulation; ALUMINUM-ALLOY SHEETS; STRESS YIELD FUNCTION; HARDENING MODEL; STEEL SHEETS; PATH CHANGES; DEFORMATION; BEHAVIOR; PREDICTION; CRITERION; ACCURACY;
D O I
10.1016/j.ijmecsci.2022.107663
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this paper, the evolution of the plastic anisotropy of stainless steel 316L samples is investigated under proportional loading paths using a customized cruciform specimen. The determination of a novel cruciform specimen by a design of experiments approach integrated with finite element simulations is described. The mechanical properties of the material are characterized under uniaxial tension applied in every 15 from the rolling direction and equibiaxial tension from hydraulic bulge experiments. The results reveal that the plastic anisotropy shown in stress and strain significantly evolves with respect to the plastic work. Based on the experiments, the material behavior is modeled using a non-quadratic anisotropic yield function, Yld2004-18p, with parameters modeled as a function of the equivalent plastic strain, assuming plastic work equivalence, and with constant parameters for comparison. The Hockett-Sherby model is also used for the strain hardening behavior to extrapolate the results to higher strain values. The models are implemented into a user material subroutine for finite element simulations. To validate the model, in-plane biaxial tension experiments are performed, using a customized specimen, to achieve greater deformation than previous designs by introducing double-sided pockets for thickness reduction and notches in the corner areas. The results are compared with finite element simulations implemented with the plasticity models.
引用
收藏
页数:16
相关论文
共 90 条
[1]   Elastic-Plastic and Inelastic Characteristics of High Strength Steel Sheets under Biaxial Loading and Unloading [J].
Andar, Mohammad Omar ;
Kuwabara, Toshihiko ;
Yonemura, Shigeru ;
Uenishi, Akihiro .
ISIJ INTERNATIONAL, 2010, 50 (04) :613-619
[2]  
ASTM, 2013, E8E8M16A ASTM, DOI [10.1520/E0008-04.03.01, DOI 10.1520/E0008-04.03.01]
[3]   An improved analytical description of orthotropy in metallic sheets [J].
Banabic, D ;
Aretz, H ;
Comsa, DS ;
Paraianu, L .
INTERNATIONAL JOURNAL OF PLASTICITY, 2005, 21 (03) :493-512
[4]   Non-quadratic yield criterion for orthotropic sheet metals under plane-stress conditions [J].
Banabic, D ;
Kuwabara, T ;
Balan, T ;
Comsa, DS ;
Julean, D .
INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2003, 45 (05) :797-811
[5]   Advances in anisotropy and formability [J].
Banabic, Dorel ;
Barlat, Frederic ;
Cazacu, Oana ;
Kuwabara, Toshihiko .
INTERNATIONAL JOURNAL OF MATERIAL FORMING, 2010, 3 (03) :165-189
[6]  
Banerjee D., 2015, Miner. Met. Mater. Soc. Eds TMS 2015 144th Annu. Meet. Exhib, DOI DOI 10.1007/978-3-319-48127-2_35
[7]   Plastic deformation of commercially-pure titanium: experiments and modeling [J].
Baral, Madhav ;
Hama, Takayuki ;
Knudsen, Erik ;
Korkolis, Yannis P. .
INTERNATIONAL JOURNAL OF PLASTICITY, 2018, 105 :164-194
[8]   A 6-COMPONENT YIELD FUNCTION FOR ANISOTROPIC MATERIALS [J].
BARLAT, F ;
LEGE, DJ ;
BREM, JC .
INTERNATIONAL JOURNAL OF PLASTICITY, 1991, 7 (07) :693-712
[9]   Plane stress yield function for aluminum alloy sheets - part 1: theory [J].
Barlat, F ;
Brem, JC ;
Yoon, JW ;
Chung, K ;
Dick, RE ;
Lege, DJ ;
Pourgoghrat, F ;
Choi, SH ;
Chu, E .
INTERNATIONAL JOURNAL OF PLASTICITY, 2003, 19 (09) :1297-1319
[10]   PLASTIC BEHAVIOR AND STRETCHABILITY OF SHEET METALS .1. A YIELD FUNCTION FOR ORTHOTROPIC SHEETS UNDER PLANE-STRESS CONDITIONS [J].
BARLAT, F ;
LIAN, J .
INTERNATIONAL JOURNAL OF PLASTICITY, 1989, 5 (01) :51-66