A machine learning approach to automate ductile damage parameter selection using finite element simulations

被引:2
|
作者
O'Connor, A. N. [1 ,2 ]
Mongan, P. G. [1 ,3 ]
O'Dowd, N. P. [1 ,2 ,3 ]
机构
[1] Univ Limerick, Sch Engn, Limerick, Ireland
[2] Univ Limerick, Bernal Inst, Limerick, Ireland
[3] Confirm Smart Mfg Res Ctr, Limerick, Ireland
关键词
Machine learning; Bayesian optimisation; Ductile damage; Parameter selection; GAUSSIAN-PROCESSES; FRACTURE; IDENTIFICATION; GROWTH;
D O I
10.1016/j.euromechsol.2023.105180
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Ductile damage models require constitutive model parameter values that are difficult to derive experimentally or analytically. The calibration procedure for ductile damage model parameters, typically performed manually, is labour-intensive. In this work we detail a fully autonomous framework that integrates Bayesian optimisation and finite element analysis to identify ductile damage model parameters. The framework detailed here selects ductile damage model parameters from inputs that can be derived from a simple tensile test. This framework has been successfully deployed to three datasets of P91 material tested at ambient (20 degrees C) and higher (500 degrees C) temperatures. The Bayesian optimisation derived material model parameters result in simulated output with less than 2% error compared to experimental data. This research demonstrates that algorithm hyperparameters can significantly affect the Bayesian optimised ductile damage parameter values resulting in non-unique ductile damage parameters. We show that the non-unique solutions can be further assessed using a second test geometry.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Analysis of damage control of thin plate with piezoelectric actuators using finite element and machine learning approach
    Anjum, Asraar
    Aabid, Abdul
    Hrairi, Meftah
    FRATTURA ED INTEGRITA STRUTTURALE-FRACTURE AND STRUCTURAL INTEGRITY, 2023, 17 (66): : 112 - 126
  • [2] Using machine learning to automate calculations of conformational kinetics in molecular simulations
    Grazioli, Gianmarc
    Andricioaei, Ioan
    Butts, Carter
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [3] Simulations and parameter estimation of a trap-insect model using a finite element approach
    Anguelov, Roumen
    Dufourd, Claire
    Dumont, Yves
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2017, 133 : 47 - 75
  • [4] Prediction of Ductile Damage in Composite Material Used in Type IV Hydrogen Tanks by Artificial Neural Network and Machine Learning with Finite Element Modeling Approach
    Kadri, Kheireddin
    Kallel, Achraf
    Guerard, Guillaume
    Ben Abdallah, Abir
    Ballut, Sebastien
    Fitoussi, Joseph
    Shirinbayan, Mohammadali
    ENERGY TECHNOLOGY, 2025, 13 (01)
  • [5] Supervised Deep Learning with Finite Element simulations for damage identification in bridges
    Fernandez-Navamuel, Ana
    Zamora-Sanchez, Diego
    Omella, Angel J.
    Pardo, David
    Garcia-Sanchez, David
    Magalhaes, Filipe
    ENGINEERING STRUCTURES, 2022, 257
  • [6] A finite element approach to anisotropic damage of ductile materials in large deformations Part II: finite element formulation and applications
    In Sik Nho
    Jong Gye Shin
    Sahng Jun Yim
    International Journal of Fracture, 1997, 84 (3) : 279 - 295
  • [7] A finite element approach to anisotropic damage of ductile materials in large deformations .2. Finite element formulation and applications
    Shin, JG
    Nho, IS
    Yim, SJ
    INTERNATIONAL JOURNAL OF FRACTURE, 1997, 84 (03) : 279 - 295
  • [8] An algorithmic approach to parameter selection in machine learning using meta-optimization techniques
    Camilleri, Michel
    Neri, Filippo
    Papoutsidakis, Michalis
    WSEAS Transactions on Systems, 2014, 13 (01): : 203 - 212
  • [9] PROCESS PARAMETER SELECTION FOR THE CONSOLIDATION OF CONTINUOUS FIBER-REINFORCED COMPOSITES USING FINITE-ELEMENT SIMULATIONS
    NICOLAOU, PD
    PIEHLER, HR
    SAIGAL, S
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 1995, 37 (07) : 669 - 690
  • [10] A MACHINE LEARNING APPROACH FOR PROBABILISTIC EVALUATION OF FINITE ELEMENT ANALYSIS
    Diermeier, Florian
    Voigt, Matthias
    Mailach, Ronald
    Meyer, Marcus
    PROCEEDINGS OF ASME TURBO EXPO 2023: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2023, VOL 11B, 2023,