RoFormer for Position Aware Multiple Instance Learning in Whole Slide Image Classification

被引:0
作者
Pochet, Etienne [1 ]
Maroun, Rami [1 ]
Trullo, Roger [1 ]
机构
[1] Sanofi, Chilly Mazarin, France
来源
MACHINE LEARNING IN MEDICAL IMAGING, MLMI 2023, PT II | 2024年 / 14349卷
关键词
D O I
10.1007/978-3-031-45676-3_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whole slide image (WSI) classification is a critical task in computational pathology. However, the gigapixel-size of such images remains a major challenge for the current state of deep-learning. Current methods rely on multiple-instance learning (MIL) models with frozen feature extractors. Given the the high number of instances in each image, MIL methods have long assumed independence and permutation-invariance of patches, disregarding the tissue structure and correlation between patches. Recent works started studying this correlation between instances but the computational workload of such a high number of tokens remained a limiting factor. In particular, relative position of patches remains unaddressed. We propose to apply a straightforward encoding module, namely a RoFormer layer, relying onmemory-efficient exact self-attention and relative positional encoding. This module can perform full self-attention with relative position encoding on patches of large and arbitrary shapedWSIs, solving the need for correlation between instances and spatial modeling of tissues. We demonstrate that our method outperforms state-of-the-art MIL models on three commonly used public datasets (TCGA-NSCLC, BRACS and Camelyon16)) on weakly supervised classification tasks. Code is available at https://github.com/Sanofi-Public/DDS-RoFor merMIL.
引用
收藏
页码:437 / 446
页数:10
相关论文
共 24 条
[1]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[2]   BRACS: A Dataset for BReAst Carcinoma Subtyping in H&E Histology Images [J].
Brancati, Nadia ;
Anniciello, Anna Maria ;
Pati, Pushpak ;
Riccio, Daniel ;
Scognamiglio, Giosue ;
Jaume, Guillaume ;
De Pietro, Giuseppe ;
Di Bonito, Maurizio ;
Foncubierta, Antonio ;
Botti, Gerardo ;
Gabrani, Maria ;
Feroce, Florinda ;
Frucci, Maria .
DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION, 2022, 2022
[3]   Scaling Vision Transformers to Gigapixel Images via Hierarchical Self-Supervised Learning [J].
Chen, Richard J. ;
Chen, Chengkuan ;
Li, Yicong ;
Chen, Tiffany Y. ;
Trister, Andrew D. ;
Krishnan, Rahul G. ;
Mahmood, Faisal .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :16123-16134
[4]  
Dao T., 2022, Advances in neural information processing systems 35: Annual conference on neural information processing systems
[5]  
Dosovitskiy A, 2021, Arxiv, DOI [arXiv:2010.11929, 10.48550/arXiv.2010.11929, DOI 10.48550/ARXIV.2010.11929]
[6]  
Gadermayr M, 2023, Arxiv, DOI arXiv:2206.04425
[7]  
He KM, 2015, Arxiv, DOI [arXiv:1512.03385, DOI 10.48550/ARXIV.1512.03385]
[8]  
Ilse M, 2018, PR MACH LEARN RES, V80
[9]  
Lefaudeux Benjamin., 2022, xformers: A modular and hackable transformer modelling library
[10]   Dual-stream Multiple Instance Learning Network for Whole Slide Image Classification with Self-supervised Contrastive Learning [J].
Li, Bin ;
Li, Yin ;
Eliceiri, Kevin W. .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :14313-14323