Regional perception and multi-scale feature fusion network for cardiac segmentation

被引:6
作者
Lu, Chenggang [1 ]
Yuan, Jinli [2 ]
Xia, Kewen [1 ]
Guo, Zhitao [2 ]
Chen, Muxuan [2 ]
Yu, Hengyong [3 ]
机构
[1] Hebei Univ Technol, Sch Artificial Intelligence, Tianjin 300401, Peoples R China
[2] Hebei Univ Technol, Sch Elect & Informat Engn, Tianjin 300401, Peoples R China
[3] Univ Massachusetts Lowell, Dept Elect & Comp Engn, Lowell, MA 01854 USA
关键词
deep learning; CMR image segmentation; multi-organ segmentation; vision transformer; LEFT-VENTRICLE SEGMENTATION; INTENSITY INHOMOGENEITY; REGRESSION; MRI;
D O I
10.1088/1361-6560/acc71f
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Objective. Cardiovascular disease (CVD) is a group of diseases affecting cardiac and blood vessels, and short-axis cardiac magnetic resonance (CMR) images are considered the gold standard for the diagnosis and assessment of CVD. In CMR images, accurate segmentation of cardiac structures (e.g. left ventricle) assists in the parametric quantification of cardiac function. However, the dynamic beating of the heart renders the location of the heart with respect to other tissues difficult to resolve, and the myocardium and its surrounding tissues are similar in grayscale. This makes it challenging to accurately segment the cardiac images. Our goal is to develop a more accurate CMR image segmentation approach. Approach. In this study, we propose a regional perception and multi-scale feature fusion network (RMFNet) for CMR image segmentation. We design two regional perception modules, a window selection transformer (WST) module and a grid extraction transformer (GET) module. The WST module introduces a window selection block to adaptively select the window of interest to perceive information, and a windowed transformer block to enhance global information extraction within each feature window. The WST module enhances the network performance by improving the window of interest. The GET module grids the feature maps to decrease the redundant information in the feature maps and enhances the extraction of latent feature information of the network. The RMFNet further introduces a novel multi-scale feature extraction module to improve the ability to retain detailed information. Main results. The RMFNet is validated with experiments on three cardiac data sets. The results show that the RMFNet outperforms other advanced methods in overall performance. The RMFNet is further validated for generalizability on a multi-organ data set. The results also show that the RMFNet surpasses other comparison methods. Significance. Accurate medical image segmentation can reduce the stress of radiologists and play an important role in image-guided clinical procedures.
引用
收藏
页数:16
相关论文
共 53 条
[1]  
Abdeltawab H, 2020, COMPUT MED IMAG GRAP, V81, DOI [10.1016/j.compmedimg.2020.101717, 10.1016/j.compmedimag.2020.101717]
[2]  
Anami BS, 2013, NAT CONF COMPUT VIS
[3]   A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardiac MRI [J].
Avendi, M. R. ;
Kheradvar, Arash ;
Jafarkhani, Hamid .
MEDICAL IMAGE ANALYSIS, 2016, 30 :108-119
[4]   Deep Learning Techniques for Automatic MRI Cardiac Multi-Structures Segmentation and Diagnosis: Is the Problem Solved? [J].
Bernard, Olivier ;
Lalande, Alain ;
Zotti, Clement ;
Cervenansky, Frederick ;
Yang, Xin ;
Heng, Pheng-Ann ;
Cetin, Irem ;
Lekadir, Karim ;
Camara, Oscar ;
Gonzalez Ballester, Miguel Angel ;
Sanroma, Gerard ;
Napel, Sandy ;
Petersen, Steffen ;
Tziritas, Georgios ;
Grinias, Elias ;
Khened, Mahendra ;
Kollerathu, Varghese Alex ;
Krishnamurthi, Ganapathy ;
Rohe, Marc-Michel ;
Pennec, Xavier ;
Sermesant, Maxime ;
Isensee, Fabian ;
Jaeger, Paul ;
Maier-Hein, Klaus H. ;
Full, Peter M. ;
Wolf, Ivo ;
Engelhardt, Sandy ;
Baumgartner, Christian F. ;
Koch, Lisa M. ;
Wolterink, Jelmer M. ;
Isgum, Ivana ;
Jang, Yeonggul ;
Hong, Yoonmi ;
Patravali, Jay ;
Jain, Shubham ;
Humbert, Olivier ;
Jodoin, Pierre-Marc .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (11) :2514-2525
[5]   NLM based magnetic resonance image denoising - A review [J].
Bhujle, Hemalata V. ;
Vadavadagi, Basavaraj H. .
BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2019, 47 :252-261
[6]  
Cao H., 2023, PROC EUR C COMPUT VI, P205, DOI DOI 10.1007/978-3-031-25066-8_9
[7]  
Chen J., 2021, arXiv
[8]   Coronary computed tomography angiography for heart team decision-making in multivessel coronary artery disease [J].
Collet, Carlos ;
Onuma, Yoshinobu ;
Andreini, Daniele ;
Sonck, Jeroen ;
Pompilio, Giulio ;
Mushtaq, Saima ;
La Meir, Mark ;
Miyazaki, Yosuke ;
de Mey, Johan ;
Gaemperli, Oliver ;
Ouda, Ahmed ;
Maureira, Juan Pablo ;
Mandry, Damien ;
Camenzind, Edoardo ;
Macron, Laurent ;
Doenst, Torsten ;
Teichgraeber, Ulf ;
Sigusch, Holger ;
Asano, Taku ;
Katagiri, Yuki ;
Morel, Marie-Angete ;
Lindeboom, Wietze ;
Pontone, Gianluca ;
Luscher, Thomas F. ;
Bartorelli, Antonio L. ;
Serruys, Patrick W. .
EUROPEAN HEART JOURNAL, 2018, 39 (41) :3689-3698
[9]  
Dangi S., 2018, INT WORKSHOP STAT AT
[10]  
Devisivasankari P., 2020, 2020 INT C EMERGING