Polianthes tuberosa-Mediated Silver Nanoparticles from Flower Extract and Assessment of Their Antibacterial and Anticancer Potential: An In Vitro Approach

被引:12
作者
Alghuthaymi, Mousa A. A. [1 ]
Patil, Sunita [2 ]
Rajkuberan, Chandrasekaran [3 ]
Krishnan, Muthukumar [4 ]
Krishnan, Ushani [5 ]
Abd-Elsalam, Kamel A. A. [6 ]
机构
[1] Shaqra Univ, Sci & Humanities Coll, Biol Dept, Alquwayiyah 11971, Saudi Arabia
[2] Rajiv Mem Educ Soc Coll Pharm, Gulbarga 585102, India
[3] Karpagam Acad Higher Educ, Dept Biotechnol, Coimbatore 641021, India
[4] Anna Univ, Dept Petrochem Technol, Tiruchirappalli 620024, India
[5] Karpaga Vinayaga Coll Engn, Chengalpattu 603308, India
[6] Agr Res Ctr, Plant Pathol Res Inst, Giza 12619, Egypt
来源
PLANTS-BASEL | 2023年 / 12卷 / 06期
关键词
silver nanoparticles; synthesis and characterization; anticancer activity; flower; P; tuberosa; GREEN SYNTHESIS; OXIDATIVE STRESS; CYTOTOXICITY; MECHANISM; DAMAGE; CELLS;
D O I
10.3390/plants12061261
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Plant-mediated metallic nanoparticles have beenreported for a diversified range of applications in biological sciences. In the present study, we propose the Polianthes tuberosa flower as a reducing and stabilizing agent for the synthesis of silver nanoparticles (PTAgNPs). The PTAgNPs were exclusively characterized using UV-Visible spectroscopy, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy, zeta potential, and transmission electron microscopy (TEM) studies. In a biological assay, we investigated the antibacterial and anticancer activity of silver nanoparticles in the A431 cell line. The PTAgNPs demonstrated a dose-dependent activity in E. coli and S. aureus, suggesting the bactericidal nature of AgNPs. The PTAgNPs exhibited dose-dependent toxicity in the A431 cell line, with an IC50 of 54.56 mu g/mL arresting cell growth at the S phase, as revealed by flow cytometry analysis. The COMET assay revealed 39.9% and 18.15 severities of DNA damage and tail length in the treated cell line, respectively. Fluorescence staining studies indicate that PTAgNPs cause reactive oxygen species (ROS) and trigger apoptosis. This research demonstrates that synthesized silver nanoparticles have a significant effect on inhibiting the growth of melanoma cells and other forms of skin cancer. The results show that these particles can cause apoptosis or cell death in malignant tumor cells. This suggests that they could be used to treat skin cancers without harming normal tissues.
引用
收藏
页数:14
相关论文
共 52 条
[1]   Green nanotechnology: a review on green synthesis of silver nanoparticles - an ecofriendly approach [J].
Ahmad, Shabir ;
Munir, Sidra ;
Zeb, Nadia ;
Ullah, Asad ;
Khan, Behramand ;
Ali, Javed ;
Bilal, Muhammad ;
Omer, Muhammad ;
Alamzeb, Muhammad ;
Salman, Syed Muhammad ;
Ali, Saqib .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2019, 14 :5087-5107
[2]   Green Synthesis of Gold Nanoparticles Using Polianthes tuberosa L. Floral Extract [J].
Alghuthaymi, Mousa A. ;
Rajkuberan, Chandrasekaran ;
Santhiya, Thiyagaraj ;
Krejcar, Ondrej ;
Kuca, Kamil ;
Periakaruppan, Rajiv ;
Prabukumar, Seetharaman .
PLANTS-BASEL, 2021, 10 (11)
[3]   Green synthesis of silver nanoparticles using Pimpinella anisum seeds: antimicrobial activity and cytotoxicity on human neonatal skin stromal cells and colon cancer cells [J].
AlSalhi, Mohamad S. ;
Devanesan, Sandhanasamy ;
Alfuraydi, Akram A. ;
Vishnubalaji, Radhakrishnan ;
Munusamy, Murugan A. ;
Murugan, Kadarkarai ;
Nicoletti, Marcello ;
Benelli, Giovanni .
INTERNATIONAL JOURNAL OF NANOMEDICINE, 2016, 11 :4439-4449
[4]   Phytosynthesis of silver nanoparticles using Mangifera indica flower extract as bioreductant and their broad-spectrum antibacterial activity [J].
Ameen, Fuad ;
Srinivasan, P. ;
Selvankumar, T. ;
Kamala-Kannan, S. ;
Al Nadhari, S. ;
Almansob, A. ;
Dawoud, T. ;
Govarthanan, M. .
BIOORGANIC CHEMISTRY, 2019, 88
[5]   Skin Cancer: Epidemiology, Disease Burden, Pathophysiology, Diagnosis, and Therapeutic Approaches [J].
Apalla, Zoe ;
Nashan, Dorothee ;
Weller, Richard B. ;
Castellsague, Xavier .
DERMATOLOGY AND THERAPY, 2017, 7 :S5-S19
[6]   Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells [J].
AshaRani, P. V. ;
Mun, Grace Low Kah ;
Hande, Manoor Prakash ;
Valiyaveettil, Suresh .
ACS NANO, 2009, 3 (02) :279-290
[7]   Natural products in drug discovery: advances and opportunities [J].
Atanasov, Atanas G. ;
Zotchev, Sergey B. ;
Dirsch, Verena M. ;
Supuran, Claudiu T. .
NATURE REVIEWS DRUG DISCOVERY, 2021, 20 (03) :200-216
[8]   Green synthesized monodispersed silver nanoparticles' characterization and their efficacy against cancer cells [J].
Banu, Afreen ;
Gousuddin, Mohammad ;
Yahya, Esam Bashir .
BIOMEDICAL RESEARCH AND THERAPY, 2021, 8 (08) :4476-4482
[9]   Biogenic synthesis of silver nanoparticles and their antioxidant and antibacterial activity [J].
Bhakya, S. ;
Muthukrishnan, S. ;
Sukumaran, M. ;
Muthukumar, M. .
APPLIED NANOSCIENCE, 2016, 6 (05) :755-766
[10]   Effects of Silver Nanoparticles on Oxidative DNA Damage-repair as a Function of p38 MAPK Status: A Comparative Approach Using Human Jurkat T Cells and the Nematode Caenorhabditis elegans [J].
Chatterjee, Nivedita ;
Eom, Hyun Jeong ;
Choi, Jinhee .
ENVIRONMENTAL AND MOLECULAR MUTAGENESIS, 2014, 55 (02) :122-133