SARS-CoV-2 Spike protein activates TMEM16F-mediated platelet procoagulant activity

被引:13
作者
Cappelletto, Ambra [1 ]
Allan, Harriet E. [2 ]
Crescente, Marilena [2 ]
Schneider, Edoardo [1 ]
Bussani, Rossana [3 ]
Ali, Hashim [1 ]
Secco, Ilaria [1 ]
Vodret, Simone [4 ]
Simeone, Roberto [5 ]
Mascaretti, Luca [5 ]
Zacchigna, Serena [3 ,4 ]
Warner, Timothy D. [2 ]
Giacca, Mauro [1 ]
机构
[1] Kings Coll London, British Heart Fdn Ctr Res Excellence, Sch Cardiovasc Med & Sci, London, England
[2] Queen Mary Univ London, Blizard Inst, Barts & London Sch Med & Dent, London, England
[3] Univ Trieste, Dept Med Surg & Hlth Sci, Trieste, Italy
[4] Int Ctr Genet Engn & Biotechnol ICGEB, Trieste, Italy
[5] Azienda Sanit Univ Giuliano Isontina ASUGI, Dipartimento Med Trasfusionale Giuliano Isontino, Trieste, Italy
基金
欧洲研究理事会;
关键词
platelets; SARS-CoV-2; TMEM16F; coagulation; Niclosamide; Clofazimine; COVID-19; Spike; INFECTION; THROMBOCYTOPENIA; THROMBOSIS; TMEM16F;
D O I
10.3389/fcvm.2022.1013262
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Thrombosis of the lung microvasculature is a characteristic of COVID-19 disease, which is observed in large excess compared to other forms of acute respiratory distress syndrome and thus suggests a trigger for thrombosis that is endogenous to the lung. Our recent work has shown that the SARS-CoV-2 Spike protein activates the cellular TMEM16F chloride channel and scramblase. Through a screening on >3,000 FDA/EMA approved drugs, we identified Niclosamide and Clofazimine as the most effective molecules at inhibiting Spike-induced TMEM16 activation. As TMEM16F plays an important role in stimulating the procoagulant activity of platelets, we investigated whether Spike directly affects platelet activation and pro-thrombotic function and tested the effect of Niclosamide and Clofazimine on these processes. Here we show that Spike, present either on the virion envelope or on the cell plasma membrane, promotes platelet activation, adhesion and spreading. Spike was active as a sole agonist or, even more effectively, by enhancing the function of known platelet activators. In particular, Spike-induced a marked procoagulant phenotype in platelets, by enhancing Ca2+ flux, phosphatidylserine externalization on the platelet outer cell membrane, and thrombin generation. Eventually, this increased thrombin-induced clot formation and retraction. Both Niclosamide and Clofazimine blocked this Spike-induced procoagulant response. These findings provide a pathogenic mechanism to explain lung thrombosis-associated with severe COVID-19 infection. We propose that Spike, present in SARS-CoV-2 virions or exposed on the surface of infected cells in the lungs, enhances the effects of inflammation and leads to local platelet stimulation and subsequent activation of the coagulation cascade. As platelet TMEM16F is central in this process, these findings reinforce the rationale of repurposing Niclosamide for COVID-19 therapy.
引用
收藏
页数:16
相关论文
共 65 条
[1]   Pulmonary Vascular Endothelialitis, Thrombosis, and Angiogenesis in Covid-19 [J].
Ackermann, Maximilian ;
Verleden, Stijn E. ;
Kuehnel, Mark ;
Haverich, Axel ;
Welte, Tobias ;
Laenger, Florian ;
Vanstapel, Arno ;
Werlein, Christopher ;
Stark, Helge ;
Tzankov, Alexandar ;
Li, William W. ;
Li, Vincent W. ;
Mentzer, Steven J. ;
Jonigk, Danny .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (02) :120-128
[2]   THE BIOLOGY AND TOXICOLOGY OF MOLLUSCICIDES, BAYLUSCIDE [J].
ANDREWS, P ;
THYSSEN, J ;
LORKE, D .
PHARMACOLOGY & THERAPEUTICS, 1982, 19 (02) :245-295
[3]   Utility of 96-well plate aggregometry and measurement of thrombi adhesion to determine aspirin and clopidogrel effectiveness [J].
Armstrong, Paul C. J. ;
Dhanji, Al-Rehan ;
Truss, Nicola J. ;
Zain, Zetty N. M. ;
Tucker, Arthur T. ;
Mitchell, Jane A. ;
Warner, Timothy D. .
THROMBOSIS AND HAEMOSTASIS, 2009, 102 (04) :772-778
[4]   TMEM16F-Mediated Platelet Membrane Phospholipid Scrambling Is Critical for Hemostasis and Thrombosis but not Thromboinflammation in Mice-Brief Report [J].
Baig, Ayesha A. ;
Haining, Elizabeth J. ;
Geuss, Eva ;
Beck, Sarah ;
Swieringa, Frauke ;
Wanitchakool, Podchanart ;
Schuhmann, Michael K. ;
Stegner, David ;
Kunzelmann, Karl ;
Kleinschnitz, Christoph ;
Heemskerk, Johan W. M. ;
Braun, Attila ;
Nieswandt, Bernhard .
ARTERIOSCLEROSIS THROMBOSIS AND VASCULAR BIOLOGY, 2016, 36 (11) :2152-+
[5]   Targeting potential drivers of COVID-19: Neutrophil extracellular traps [J].
Barnes, Betsy J. ;
Adrover, Jose M. ;
Baxter-Stoltzfus, Amelia ;
Borczuk, Alain ;
Cools-Lartigue, Jonathan ;
Crawford, James M. ;
Dassler-Plenker, Juliane ;
Guerci, Philippe ;
Huynh, Caroline ;
Knight, Jason S. ;
Loda, Massimo ;
Looney, Mark R. ;
McAllister, Florencia ;
Rayes, Roni ;
Renaud, Stephane ;
Rousseau, Simon ;
Salvatore, Steven ;
Schwartz, Robert E. ;
Spicer, Jonathan D. ;
Yost, Christian C. ;
Weber, Andrew ;
Zuo, Yu ;
Egeblad, Mikala .
JOURNAL OF EXPERIMENTAL MEDICINE, 2020, 217 (06)
[6]   COVID-19 and Thrombotic or Thromboembolic Disease: Implications for Prevention, Antithrombotic Therapy, and Follow [J].
Bikdeli, Behnood ;
Madhavan, Mahesh V. ;
Jimenez, David ;
Chuich, Taylor ;
Dreyfus, Isaac ;
Driggin, Elissa ;
Der Nigoghossian, Caroline ;
Ageno, Walter ;
Madjid, Mohammad ;
Guo, Yutao ;
Tang, Liang V. ;
Hu, Yu ;
Giri, Jay ;
Cushman, Mary ;
Quere, Isabelle ;
Dimakakos, Evangelos P. ;
Gibson, C. Michael ;
Lippi, Giuseppe ;
Favaloro, Emmanuel J. ;
Fareed, Jawed ;
Caprini, Joseph A. ;
Tafur, Alfonso J. ;
Burton, John R. ;
Francese, Dominic P. ;
Wang, Elizabeth Y. ;
Falanga, Anna ;
McLintock, Claire ;
Hunt, Beverley J. ;
Spyropoulos, Alex C. ;
Barnes, Geoffrey D. ;
Eikelboom, John W. ;
Weinberg, Ido ;
Schulman, Sam ;
Carrier, Marc ;
Piazza, Gregory ;
Beckman, Joshua A. ;
Steg, Gabriel ;
Stone, Gregg W. ;
Rosenkranz, Stephan ;
Goldhaber, Samuel Z. ;
Parikh, Sahil A. ;
Monreal, Manuel ;
Krumholz, Harlan M. ;
Konstantinides, Stavros V. ;
Weitz, Jeffrey I. ;
Lip, Gregory Y. H. .
JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2020, 75 (23) :2950-2973
[7]   Imbalanced Host Response to SARS-CoV-2 Drives Development of COVID-19 [J].
Blanco-Melo, Daniel ;
Nilsson-Payant, Benjamin E. ;
Liu, Wen-Chun ;
Uhl, Skyler ;
Hoagland, Daisy ;
Moller, Rasmus ;
Jordan, Tristan X. ;
Oishi, Kohei ;
Panis, Maryline ;
Sachs, David ;
Wang, Taia T. ;
Schwartz, Robert E. ;
Lim, Jean K. ;
Albrecht, Randy A. ;
tenOever, Benjamin R. .
CELL, 2020, 181 (05) :1036-+
[8]   Endothelial dysfunction and immunothrombosis as key pathogenic mechanisms in COVID-19 [J].
Bonaventura, Aldo ;
Vecchie, Alessandra ;
Dagna, Lorenzo ;
Martinod, Kimberly ;
Dixon, Dave L. ;
Van Tassell, Benjamin W. ;
Dentali, Francesco ;
Montecucco, Fabrizio ;
Massberg, Steffen ;
Levi, Marcel ;
Abbate, Antonio .
NATURE REVIEWS IMMUNOLOGY, 2021, 21 (05) :319-329
[9]   SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype [J].
Bongiovanni, Dario ;
Klug, Melissa ;
Lazareva, Olga ;
Weidlich, Simon ;
Biasi, Marina ;
Ursu, Simona ;
Warth, Sarah ;
Buske, Christian ;
Lukas, Marina ;
Spinner, Christoph D. ;
von Scheidt, Moritz ;
Condorelli, Gianluigi ;
Baumbach, Jan ;
Laugwitz, Karl-Ludwig ;
List, Markus ;
Bernlochner, Isabell .
CELL DEATH & DISEASE, 2021, 12 (01)
[10]   Drugs that inhibit TMEM16 proteins block SARS-CoV-2 spike-induced syncytia [J].
Braga, Luca ;
Ali, Hashim ;
Secco, Ilaria ;
Chiavacci, Elena ;
Neves, Guilherme ;
Goldhill, Daniel ;
Penn, Rebecca ;
Jimenez-Guardeno, Jose M. ;
Ortega-Prieto, Ana M. ;
Bussani, Rossana ;
Cannata, Antonio ;
Rizzari, Giorgia ;
Collesi, Chiara ;
Schneider, Edoardo ;
Arosio, Daniele ;
Shah, Ajay M. ;
Barclay, Wendy S. ;
Malim, Michael H. ;
Burrone, Juan ;
Giacca, Mauro .
NATURE, 2021, 594 (7861) :88-+