THE FOURIER, HILBERT, AND MELLIN TRANSFORMS ON A HALF-LINE

被引:0
作者
Blasten, Emilia L. K. [1 ]
Paivarinta, Lassi [2 ]
Sadique, Sadia [2 ]
机构
[1] LUT Univ, Sch Engn Sci, Computat Engn, Lahti 15210, Finland
[2] Tallinn Univ Technol, Dept Cybernet, Div Math, EE-19086 Tallinn, Estonia
基金
芬兰科学院;
关键词
half-line; Mellin transform; singular behavior; vertical strip; unique solution; CRACKS;
D O I
10.1137/23M1560628
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We are interested in the singular behavior at the origin of solutions to the equation H \rho = e on a half-axis, where H is the one-sided Hilbert transform, \rho an unknown solution, and e a known function. This is a simpler model problem on the path to understanding wave field singularities caused by curve-shaped scatterers in a planar domain. We prove that \rho has a singularity of the form M [e](1/2)/\surdt, where M is the Mellin transform. To do this, we use specially built function spaces M'(a, b) by Zemanian, and these allow us to precisely investigate the relationship between the Mellin and Hilbert transforms. Fourier comes into play in the sense that the Mellin transform is simpy the Fourier transform on the locally compact Abelian multiplicative group of the half-line, and as a more familiar operator, it guides our investigation.
引用
收藏
页码:7529 / 7548
页数:20
相关论文
共 24 条
[1]   Cracks with Impedance; Stable Determination from Boundary Data [J].
Alessandrini, Giovanni ;
Sincich, Eva .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2013, 62 (03) :947-989
[2]   The finite Hilbert transform in weighted spaces [J].
Astala, K ;
Paivarinta, L ;
Saksman, E .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :1157-1167
[3]  
Bertrand J., 1995, The Transforms and Applications Handbook
[4]   Unique Determination of the Shape of a Scattering Screen from a Passive Measurement [J].
Blasten, Emilia ;
Paivarinta, Lassi ;
Sadique, Sadia .
MATHEMATICS, 2020, 8 (07)
[5]   Approximation of the Hilbert Transform on the real semiaxis using Laguerre zeros [J].
De Bonis, MC ;
Della Vecchia, B ;
Mastroianni, G .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 140 (1-2) :209-229
[6]  
FOLLAND G. B., 1992, The Wadsworth \& Brooks/
[7]  
Fourier J. B.J, 1822, THEORIE ANAL CHALEUR
[8]   DETERMINING CRACKS BY BOUNDARY MEASUREMENTS [J].
FRIEDMAN, A ;
VOGELIUS, M .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1989, 38 (03) :527-556
[9]  
Hilbert D., 1904, VERHANDL 3 INTERNAT, P233, DOI [10.11588/HEIDOK.00016038, DOI 10.11588/HEIDOK.00016038]
[10]  
King F. W., 2009, Hilbert Transforms