EARP: Integration with Entity Attribute and Relation Path for Event Knowledge Graph Representation Learning

被引:0
|
作者
Xu, Ze [1 ]
Zhou, Hao [1 ]
He, Ting [1 ]
Wang, Huazhen [1 ,2 ]
机构
[1] Huaqiao Univ, Coll Comp Sci & Technol, Xiamen, Peoples R China
[2] Fujian Prov Univ, Key Lab Comp Vision & Machine Learning, Huaqiao Univ, Xiamen, Peoples R China
来源
2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN | 2023年
关键词
event knowledge graph; representation learning; link prediction; triple classification; multi-step path;
D O I
10.1109/IJCNN54540.2023.10191442
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Event knowledge graph (EKG) as a special case of knowledge graph (KG) can realize the goal of event prediction, and has been proved useful in medical diagnosis and intelligent recommendation. To successfully build an EKG, knowledge representation learning is often required to compute the semantic links of entities and relationships in a low-dimensional space and solve the data sparsity issue in knowledge acquisition, fusion and reasoning. This paper proposes a new EKG representation learning model featuring the integration of event entity attributes and relation paths. By utilizing the knowledge of entity attribute, which contains entity type and entity description, and the knowledge about relation paths, the entity initial vector is obtained by multiplying entity semantic vector, entity description representation vector and entity type representation vector, and the representation of relation path is obtained according to the relation between event pairs, a translation-based model framework is used to integrate and train all vectors to obtain the entity learning vector and the relation learning vector. our method can generate more expressive learning representations, and consequently, enhance the inference performance of EKG. Experiments on publicly available real-world EKG datasets show that our method achieves better performance than the state-of-the-art models on two typical tasks.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Lifelong Representation Learning on Multi-sourced Knowledge Graphs via Linked Entity Replay
    Sun Z.-Q.
    Cui Y.-N.
    Hu W.
    Ruan Jian Xue Bao/Journal of Software, 2023, 34 (10):
  • [42] Joint User-Entity Representation Learning for Event Recommendation in Social Network
    Tang, Lijun
    Liu, Eric Yi
    2017 IEEE 33RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2017), 2017, : 271 - 280
  • [43] Temporal knowledge graph representation learning based on relational aggregation
    Su F.-L.
    Jing N.
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (02): : 235 - 242
  • [44] Learning high-order structural and attribute information by knowledge graph attention networks for enhancing knowledge graph embedding
    Liu, Wenqiang
    Cai, Hongyun
    Cheng, Xu
    Xie, Sifa
    Yu, Yipeng
    Dukehyzhang
    KNOWLEDGE-BASED SYSTEMS, 2022, 250
  • [45] Temporal knowledge graph representation learning with local and global evolutions
    Zhang, Jiasheng
    Liang, Shuang
    Sheng, Yongpan
    Shao, Jie
    KNOWLEDGE-BASED SYSTEMS, 2022, 251
  • [46] Hybrid Approach for Accurate and Interpretable Representation Learning of Knowledge Graph
    Yogendran, Nivetha
    Kanagarajah, Abivarshi
    Chandiran, Kularajini
    Thayasivam, Uthayasanker
    MERCON 2020: 6TH INTERNATIONAL MULTIDISCIPLINARY MORATUWA ENGINEERING RESEARCH CONFERENCE (MERCON), 2020, : 650 - 655
  • [47] InterTris: Specific Domain Knowledge Graph Representation Learning by Interaction Among Triple Elements
    Zhang Y.
    Meng X.-F.
    Jisuanji Xuebao/Chinese Journal of Computers, 2021, 44 (08): : 1535 - 1548
  • [48] Missing relation prediction in knowledge graph using local and neighbour aware entity embedding
    Khobragade, Anish
    Patil, Sanket
    Rathi, Harsha
    Ghumbre, Shashikant
    JOURNAL OF DISCRETE MATHEMATICAL SCIENCES & CRYPTOGRAPHY, 2024, 27 (04) : 1173 - 1184
  • [49] Semi-Supervised Graph Attention Networks for Event Representation Learning
    Rodrigues Mattos, Joao Pedro
    Marcacini, Ricardo M.
    2021 21ST IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2021), 2021, : 1234 - 1239
  • [50] Representation iterative fusion based on heterogeneous graph neural network for joint entity and relation extraction
    Zhao, Kang
    Xu, Hua
    Cheng, Yue
    Li, Xiaoteng
    Gao, Kai
    KNOWLEDGE-BASED SYSTEMS, 2021, 219