Confidence intervals in general regression models that utilize uncertain prior information

被引:0
作者
Kabaila, Paul [1 ]
Ranathunga, Nishika [1 ]
机构
[1] La Trobe Univ, Dept Math & Phys Sci, Bundoora, Vic 3086, Australia
关键词
Confidence interval; general regression model; parallelism hypothesis; quantal bioassay; uncertain prior information;
D O I
10.1080/03610926.2023.2243528
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
-We consider a general regression model, either without a scale parameter or with a known scale parameter. We construct a confidence interval for a scalar parameter of interest that utilizes the uncertain prior information that a distinct scalar parameter takes a specified value. This confidence interval has excellent coverage properties. It also has local scaled expected length, where the scaling is with respect to the usual confidence interval, that (a) is substantially less than 1 when the prior information is correct, (b) has a maximum value that is not too large, and (c) is close to 1 when the data and prior information are highly discordant. An important practical application of this confidence interval is to a quantal bioassay carried out to compare two similar compounds. In this context, the uncertain prior information is that the hypothesis of "parallelism" holds. We provide extensive numerical results that illustrate the attractive properties of this confidence interval in this context.
引用
收藏
页码:6266 / 6284
页数:19
相关论文
共 50 条
[31]   Bootstrap confidence intervals for trilinear partial least squares regression [J].
Serneels, S ;
Van Espen, PJ .
ANALYTICA CHIMICA ACTA, 2005, 544 (1-2) :153-158
[32]   Confidence intervals for lognormal regression and a non-parametric alternative [J].
Withers, Christopher S. ;
Nadarajah, Saralees .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2013, 83 (05) :878-893
[33]   Empirical likelihood confidence intervals for regression parameters of the survival rate [J].
Zhao, Yichuan ;
Yang, Song .
JOURNAL OF NONPARAMETRIC STATISTICS, 2012, 24 (01) :59-70
[34]   ADAPTIVE CONFIDENCE INTERVALS FOR REGRESSION FUNCTIONS UNDER SHAPE CONSTRAINTS [J].
Cai, T. Tony ;
Low, Mark G. ;
Xia, Yin .
ANNALS OF STATISTICS, 2013, 41 (02) :722-750
[35]   Residual and confidence interval for uncertain regression model with imprecise observations [J].
Lio, Waichon ;
Liu, Baoding .
JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2018, 35 (02) :2573-2583
[36]   Confidence intervals for the substitution number in the nucleotide substitution models [J].
Wang, Hsiuying .
MOLECULAR PHYLOGENETICS AND EVOLUTION, 2011, 60 (03) :472-479
[37]   Confidence Intervals for the Response Mean of a Simple Regression Model Following Pretests [J].
Niwitpong, Sa-aat ;
Panchatree, Nantaya .
THAILAND STATISTICIAN, 2011, 9 (01) :21-35
[38]   EMPIRICAL LIKELIHOOD CONFIDENCE-INTERVALS FOR LINEAR-REGRESSION COEFFICIENTS [J].
CHEN, SX .
JOURNAL OF MULTIVARIATE ANALYSIS, 1994, 49 (01) :24-40
[39]   Confidence intervals in a regression with both linear and non-linear terms [J].
Davies, Robert ;
Withers, Christopher ;
Nadarajah, Saralees .
ELECTRONIC JOURNAL OF STATISTICS, 2011, 5 :603-618
[40]   Simulation study of conditional, bootstrap, and t confidence intervals in linear regression [J].
Vos, PW ;
Hudson, S .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (03) :697-715