Thermodynamics and microstructures of Euler-Heisenberg black hole in a cavity

被引:6
作者
Yu, Qin [1 ]
Xu, Qi [1 ]
Tao, Jun [1 ]
机构
[1] Sichuan Univ, Coll Phys, Ctr Theoret Phys, Chengdu 610065, Peoples R China
关键词
black hole thermodynamics; phase transition; microstructure; PHASE-TRANSITION; GEOMETRY;
D O I
10.1088/1572-9494/ace4b3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Euler-Heisenberg black holes with quantum electrodynamics (QED) correction are embraced by a cavity in this paper, which serves as a boundary of the black hole spacetime and contributes to the equilibrium of the system. We explore the thermodynamic properties of the black hole, including the phase transitions and phase structures. The small/large black hole phase transition occurs for a negative QED parameter, while the reentrant phase transition can be observed for a small positive QED parameter. Then the thermodynamic geometry is investigated to diagnose microscopic interactions of black hole thermodynamic systems. For the reentrant phase transition, the small black holes are dominated by repulsion for the first-order coexistence curve, while the interaction between the small black hole molecules could be attractive or repulsive for the small/large black hole phase transition.
引用
收藏
页数:13
相关论文
共 67 条
[1]   Reentrant phase transitions in rotating anti-de Sitter black holes [J].
Altamirano, Natacha ;
Kubiznak, David ;
Mann, Robert B. .
PHYSICAL REVIEW D, 2013, 88 (10)
[2]   Geometry of higher-dimensional black hole thermodynamics -: art. no. 024017 [J].
Åman, JE ;
Pidokrajt, N .
PHYSICAL REVIEW D, 2006, 73 (02)
[3]   Reentrant phase transitions in Einstein-Maxwell-scalar black holes [J].
Astefanesei, Dumitru ;
Cabrera, Paulina ;
Mann, Robert B. ;
Rojas, Raul .
PHYSICAL REVIEW D, 2022, 105 (04)
[4]   Topology of black hole thermodynamics in Lovelock gravity [J].
Bai, Ning-Chen ;
Li, Lei ;
Tao, Jun .
PHYSICAL REVIEW D, 2023, 107 (06)
[5]  
Bai NC, 2023, Arxiv, DOI arXiv:2212.04341
[6]   Second order phase transition and thermodynamic geometry in Kerr-AdS black holes [J].
Banerjee, Rabin ;
Modak, Sujoy Kumar ;
Samanta, Saurav .
PHYSICAL REVIEW D, 2011, 84 (06)
[7]   4 LAWS OF BLACK HOLE MECHANICS [J].
BARDEEN, JM ;
CARTER, B ;
HAWKING, SW .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1973, 31 (02) :161-170
[8]   BLACK HOLES AND SECOND LAW [J].
BEKENSTEIN, JD .
LETTERE AL NUOVO CIMENTO, 1972, 4 (15) :737-+
[9]   The geometry of the higher dimensional black hole thermodynamics in Einstein-Gauss-Bonnet theory [J].
Biswas, Ritabrata ;
Chakraborty, Subenoy .
GENERAL RELATIVITY AND GRAVITATION, 2010, 42 (05) :1311-1322
[10]   Black hole thermodynamics in the presence of nonlinear electromagnetic fields [J].
Bokulic, A. ;
Smolic, I ;
Juric, T. .
PHYSICAL REVIEW D, 2021, 103 (12)