Convergence of a particle method for a regularized spatially homogeneous Landau equation

被引:7
作者
Carrillo, Jose A. [1 ]
Delgadino, Matias G. [2 ]
Wu, Jeremy S. H. [3 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Woodstock Rd, Oxford OX2 6GG, England
[2] Univ Texas Austin, Dept Math, 2515 Speedway,PMA 8 100 Austin, Austin, TX 78712 USA
[3] Univ Calif Los Angeles, Math Sci Bldg,520 Portola Plaza, Los Angeles, CA 90095 USA
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
Kinetic equations; particle approximation; mean field limit; MEAN-FIELD LIMIT; VLASOV EQUATIONS; APPROXIMATION; PROPAGATION; SYSTEMS; AGGREGATION; BOLTZMANN; DYNAMICS; FORCES; CHAOS;
D O I
10.1142/S0218202523500215
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a regularized version of the Landau equation, which was recently introduced in [J. A. Carrillo, J. Hu, L. Wang and J. Wu, A particle method for the homogeneous Landau equation, J. Comput. Phys. X 7 (2020) 100066, 24] to numerically approximate the Landau equation with good accuracy at reasonable computational cost. We develop the existence and uniqueness theory for weak solutions, and we reinforce the numerical findings in the above-mentioned paper by rigorously proving the validity of particle approximations to the regularized Landau equation.
引用
收藏
页码:971 / 1008
页数:38
相关论文
共 39 条
[1]  
Barros-Neto J., 1973, An introduction to the theory of distributions
[2]   Lp Theory for the Multidimensional Aggregation Equation [J].
Bertozzi, Andrea L. ;
Laurent, Thomas ;
Rosado, Jesus .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2011, 64 (01) :45-83
[3]   STOCHASTIC MEAN-FIELD LIMIT: NON-LIPSCHITZ FORCES AND SWARMING [J].
Bolley, Francois ;
Canizo, Jose A. ;
Carrillo, Jose A. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (11) :2179-2210
[4]   VLASOV DYNAMICS AND ITS FLUCTUATIONS IN 1-N LIMIT OF INTERACTING CLASSICAL PARTICLES [J].
BRAUN, W ;
HEPP, K .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1977, 56 (02) :101-113
[5]  
Bresch D., 2022, ARXIV
[6]   On mean-field limits and quantitative estimates with a large class of singular kernels: Application to the Patlak-Keller-Segel model [J].
Bresch, Didier ;
Jabin, Pierre-Emmanuel ;
Wang, Zhenfu .
COMPTES RENDUS MATHEMATIQUE, 2019, 357 (09) :708-720
[7]  
Carrillo Jose A., 2020, Journal of Computational Physics: X, V7, DOI [10.1016/j.jcpx.2020.100066, 10.1016/j.jcpx.2020.100066]
[8]   GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS [J].
Carrillo, J. A. ;
Difrancesco, M. ;
Figalli, A. ;
Laurent, T. ;
Slepcev, D. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) :229-271
[9]  
Carrillo J. A., LANDAU EQUATION GRAD
[10]   Boltzmann to Landau from the gradient flow perspective [J].
Carrillo, Jose A. ;
Delgadino, Matias G. ;
Wu, Jeremy .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2022, 219