Design and optimization of composite phase change material for cylindrical thermal energy storage

被引:10
|
作者
Tamraparni, Achutha [1 ]
Hoe, Alison [2 ]
Deckard, Michael [2 ]
Zhang, Chen [3 ]
Malone, Nathan [1 ]
Elwany, Alaa [3 ]
Shamberger, Patrick J. [2 ]
Felts, Jonathan R. [1 ]
机构
[1] J Mike Walker 66, Dept Mech Engn, College Stn, TX 77840 USA
[2] Dept Mat Sci & Engn, College Stn, TX USA
[3] Dept Ind Syst & Engn, College Stn, TX USA
关键词
Phase change materials; Thermal energy storage; Composite phase change material; Cylindrical thermal energy storage; HEAT-TRANSFER; CONDUCTIVITY ENHANCEMENT; PCM; PERFORMANCE; MANAGEMENT; POWER; SYSTEM; FOAMS; SINKS; TUBE;
D O I
10.1016/j.ijheatmasstransfer.2023.123995
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change materials store thermal energy in the form of latent heat, and are often integrated with high thermal conductivity metals to make composites that have both high power density and large en-ergy storage capacity. In this study, we provide a theoretical framework to design and optimize cylindrical composites with three figures of merit - minimization of temperature rise, maximization of the effective volumetric heat capacity and maximization of the effective heat capacity based on mass. We validate the figures of merit experimentally by 3D printing AlSi12 alloy and using octadecane as phase change ma-terial for a heat flux of 13.3 W cm -2 and heating time of 10 s. The metal component volume fractions in the printed structures vary from 15% to 70% for straight fin structures, 10% to 70% for the SC lattice structures, and 20% to 70% for branching fin structures. When minimizing temperature rise, the optimum volume fraction of thermally conductive material is 0.5-0.7. When maximizing the effective volumetric heat capacity, the optimum volume fraction for the high conductivity material is 0.3-0.5. Finally, when maximizing the effective heat capacity by mass in cylindrical composites, the optimum volume fraction for the high conductivity material is 0.2-0.3. Importantly, the optimum values depend on the applied thermal load, which is not captured in existing figures of merit for thermal storage systems. The vol-umetric and mass based heat capacity values of the optimized composites identified in this study are at least 10x higher when compared to single component PCMs that are widely used for volumetric and mass based thermal storage systems. The figures of merit developed here can assess the performance of most composite PCM systems and help to design future cylindrical composites while accounting for the thermal loads specific to the thermal storage application.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] The contribution of artificial intelligence to phase change materials in thermal energy storage: From prediction to optimization
    Liu, Shuli
    Han, Junrui
    Shen, Yongliang
    Khan, Sheher Yar
    Ji, Wenjie
    Jin, Haibo
    Kumar, Mahesh
    RENEWABLE ENERGY, 2025, 238
  • [42] Evacuated tube solar thermal collector with enhanced phase change material thermal storage: An experimental study
    Senobar, Hossein
    Aramesh, Mohamad
    Shabani, Bahman
    JOURNAL OF ENERGY STORAGE, 2022, 46
  • [43] Design and modelling of mobile thermal energy storage (M-TES) using structured composite phase change material modules
    Yang, Song
    Bai, Mengqi
    Gregoire, Benjamin
    Ma, Hongkun
    Zhang, Tongtong
    Ding, Yulong
    APPLIED THERMAL ENGINEERING, 2024, 254
  • [44] Preparation, thermal and rheological properties of hybrid nanocomposite phase change material for thermal energy storage
    Parameshwaran, R.
    Deepak, K.
    Saravanan, R.
    Kalaiselvam, S.
    APPLIED ENERGY, 2014, 115 : 320 - 330
  • [45] Energy and exergy analysis of a multipass macro-encapsulated phase change material/expanded graphite composite thermal energy storage for domestic hot water applications
    Nair, Ajay Muraleedharan
    Wilson, Christopher
    Kamkari, Babak
    Hodge, Simon
    Huang, Ming Jun
    Griffiths, Philip
    Hewitt, Neil J.
    ENERGY CONVERSION AND MANAGEMENT-X, 2024, 24
  • [46] Effect of convection on melting characteristics of phase change material- metal foam composite thermal energy storage system
    Parida, Arjun
    Bhattacharya, Anirban
    Rath, Prasenjit
    JOURNAL OF ENERGY STORAGE, 2020, 32
  • [47] Preparation and Characterization of Graphene Oxide-Grafted Hexadecanol Composite Phase-Change Material for Thermal Energy Storage
    Wang, Yi
    Liu, Zhou
    Zhang, Ting
    Zhang, Zhengfei
    ENERGY TECHNOLOGY, 2017, 5 (11) : 2005 - 2014
  • [48] Melting and solidification of a phase change material with constructal tree-shaped fins for thermal energy storage
    Shukla, A.
    Kant, K.
    Biwole, Pascal Henry
    Pitchumani, R.
    Sharma, Atul
    JOURNAL OF ENERGY STORAGE, 2022, 53
  • [49] Thermal Energy Storage in Concrete by Encapsulation of a Nano-Additivated Phase Change Material in Lightweight Aggregates
    Carrillo-Berdugo, Ivan
    Gallardo, Juan Jesus
    Ruiz-Marin, Nazaret
    Guillen-Dominguez, Violeta
    Alcantara, Rodrigo
    Navas, Javier
    Poce-Fatou, Juan Antonio
    NANOMATERIALS, 2024, 14 (14)
  • [50] Design and analysis of phase change material based floor heating system for thermal energy storage
    Yun, Beom Yeol
    Yang, Sungwoong
    Cho, Hyun Mi
    Chang, Seong Jin
    Kim, Sumin
    ENVIRONMENTAL RESEARCH, 2019, 173 : 480 - 488