Design and optimization of composite phase change material for cylindrical thermal energy storage

被引:10
|
作者
Tamraparni, Achutha [1 ]
Hoe, Alison [2 ]
Deckard, Michael [2 ]
Zhang, Chen [3 ]
Malone, Nathan [1 ]
Elwany, Alaa [3 ]
Shamberger, Patrick J. [2 ]
Felts, Jonathan R. [1 ]
机构
[1] J Mike Walker 66, Dept Mech Engn, College Stn, TX 77840 USA
[2] Dept Mat Sci & Engn, College Stn, TX USA
[3] Dept Ind Syst & Engn, College Stn, TX USA
关键词
Phase change materials; Thermal energy storage; Composite phase change material; Cylindrical thermal energy storage; HEAT-TRANSFER; CONDUCTIVITY ENHANCEMENT; PCM; PERFORMANCE; MANAGEMENT; POWER; SYSTEM; FOAMS; SINKS; TUBE;
D O I
10.1016/j.ijheatmasstransfer.2023.123995
中图分类号
O414.1 [热力学];
学科分类号
摘要
Phase change materials store thermal energy in the form of latent heat, and are often integrated with high thermal conductivity metals to make composites that have both high power density and large en-ergy storage capacity. In this study, we provide a theoretical framework to design and optimize cylindrical composites with three figures of merit - minimization of temperature rise, maximization of the effective volumetric heat capacity and maximization of the effective heat capacity based on mass. We validate the figures of merit experimentally by 3D printing AlSi12 alloy and using octadecane as phase change ma-terial for a heat flux of 13.3 W cm -2 and heating time of 10 s. The metal component volume fractions in the printed structures vary from 15% to 70% for straight fin structures, 10% to 70% for the SC lattice structures, and 20% to 70% for branching fin structures. When minimizing temperature rise, the optimum volume fraction of thermally conductive material is 0.5-0.7. When maximizing the effective volumetric heat capacity, the optimum volume fraction for the high conductivity material is 0.3-0.5. Finally, when maximizing the effective heat capacity by mass in cylindrical composites, the optimum volume fraction for the high conductivity material is 0.2-0.3. Importantly, the optimum values depend on the applied thermal load, which is not captured in existing figures of merit for thermal storage systems. The vol-umetric and mass based heat capacity values of the optimized composites identified in this study are at least 10x higher when compared to single component PCMs that are widely used for volumetric and mass based thermal storage systems. The figures of merit developed here can assess the performance of most composite PCM systems and help to design future cylindrical composites while accounting for the thermal loads specific to the thermal storage application.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Preparation and thermal properties of sodium acetate trihydrate as a novel phase change material for energy storage
    Wang, Yan
    Yu, Kaixiang
    Peng, Hao
    Ling, Xiang
    ENERGY, 2019, 167 (15 January 2019) : 269 - 274
  • [32] Nanoparticle enhanced paraffin and tailing ceramic composite phase change material for thermal energy storage
    Li, Runfeng
    Zhou, Yang
    Duan, Xili
    SUSTAINABLE ENERGY & FUELS, 2020, 4 (09) : 4547 - 4557
  • [33] Enhanced properties of mica-based composite phase change materials for thermal energy storage
    Zhang, Dongyao
    Li, Chuanchang
    Lin, Niangzhi
    Xie, Baoshan
    Chen, Jian
    JOURNAL OF ENERGY STORAGE, 2021, 42
  • [34] NUMERICAL INVESTIGATION OF ENTROPY GENERATION DURING THE DISCHARGE OF ENCAPSULATED PHASE CHANGE MATERIAL-BASED THERMAL ENERGY STORAGE
    Bhagat, Kunal
    Saha, Sandip K.
    HEAT TRANSFER RESEARCH, 2020, 51 (06) : 517 - 535
  • [35] Enhanced properties of diatomite-based composite phase change materials for thermal energy storage
    Li, Chuanchang
    Wang, Mengfan
    Xie, Baoshan
    Ma, Huan
    Chen, Jian
    RENEWABLE ENERGY, 2020, 147 : 265 - 274
  • [36] Enhancement of phase change rate of PCM in cylindrical thermal energy storage
    Pourakabar, Adel
    Darzi, A. Ali Rabienataj
    APPLIED THERMAL ENGINEERING, 2019, 150 : 132 - 142
  • [37] Thermal energy storage with phase change material A state-of-the art review
    Nkwetta, Dan Nchelatebe
    Haghighat, Fariborz
    SUSTAINABLE CITIES AND SOCIETY, 2014, 10 : 87 - 100
  • [38] Improved Thermal Energy Storage Behavior of CuO/Palmitic acid Composite as Phase Change Material
    Ezhumalai, D. S.
    Sriharan, G.
    Harikrishnan, S.
    MATERIALS TODAY-PROCEEDINGS, 2018, 5 (06) : 14618 - 14627
  • [39] Effect of capsule size and wall thickness of packed bed thermal energy storage filled with cylindrical encapsulations of phase change material
    Kumar, Akshay
    Saha, Sandip K.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2024, 159
  • [40] Thermal and morphological study of paraffin/SEBS/expanded graphite composite phase change material for thermal energy storage
    Aulakh, Jaspreet Singh
    Joshi, Deepika P.
    ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2022, 44 (01) : 986 - 1003