Fubini's theorem for a vector-valued Daniell integral

被引:0
作者
Grobler, Jacobus J. [1 ]
机构
[1] North West Univ, Res Focus Area Pure & Appl Analyt, Potchefstroom Campus, Potchefstroom, South Africa
关键词
Fubini's theorem; product integral; Riesz space; Archimedean tensor product;
D O I
10.2989/16073606.2024.2322684
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define the product integral for two Riesz space-valued Daniell integrals and prove Fubini's theorem establishing the relation between product integrals and iterated integrals. The properties of the Fremlin tensor product of two Archimedean Riesz spaces enable one to do this in an elegant way.
引用
收藏
页码:1429 / 1435
页数:7
相关论文
共 7 条
[1]  
Donner K., 1982, EXTENSION POSITIVE O, V904
[2]   TENSOR PRODUCTS OF ARCHIMEDEAN VECTOR LATTICES [J].
FREMLIN, DH .
AMERICAN JOURNAL OF MATHEMATICS, 1972, 94 (03) :777-&
[3]  
Grobler J.J., 2021, TRENDS MATH, DOI [10.1007/978-3-030-70974-7, DOI 10.1007/978-3-030-70974-7]
[4]  
Protter P.E., 2005, Stochastic Integration and Differential Equations, VSecond
[5]  
Rompf G., 2022, ARXIV
[6]  
Schaefer H.H., 1980, MAA STUD MATH, V21, P158
[7]  
Zaanen AdriaanCornells., 1967, Integration