Progressive Motion Boosting for Video Frame Interpolation

被引:2
作者
Xiao, Jing [1 ]
Xu, Kangmin [1 ]
Hu, Mengshun [1 ]
Liao, Liang [2 ]
Wang, Zheng [1 ]
Lin, Chia-Wen [3 ,4 ]
Wang, Mi [5 ]
Satoh, Shin'ichi [6 ]
机构
[1] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
[2] Nanyang Technol Univ, Sch Comp Sci & Engn, Singapore 639798, Singapore
[3] Natl Tsing Hua Univ, Dept Elect Engn, Hsinchu 30013, Taiwan
[4] Natl Tsing Hua Univ, Inst Commun Engn, Hsinchu 30013, Taiwan
[5] Wuhan Univ, State Key Lab Informat Engn Surveying Mapping & Re, Wuhan 430072, Peoples R China
[6] Natl Inst Informat, Digital Content & Media Sci Res Div, Tokyo 1018430, Japan
基金
中国国家自然科学基金;
关键词
Frame interpolation; motion estimation; multi-scale framework; progressive boosting;
D O I
10.1109/TMM.2022.3233310
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Video frame interpolation has made great progress in estimating advanced optical flow and synthesizing in-between frames sequentially. However, frame interpolation involving various resolutions and motions remains challenging due to limited or fixed pre-trained networks. Inspired by the success of the coarse-to-fine scheme for video frame interpolation, i.e., gradually interpolating frames of different resolutions, we propose a progressive boosting network (ProBoost-Net) based on a multi-scale framework to achieve flexible recurrent scales and then gradually optimize optical flow estimation and frame interpolation. Specifically, we designed a dense motion boosting (DMB) module to transfer features close to real motion to the decoded features from the later scales, which provides complementary information to refine the motion further. Furthermore, to ensure the accuracy of the estimated motion features at each scale, we propose a motion adaptive fusion (MAF) module that adaptively deals with motions with different receptive fields according to the motion conditions. Thanks to the framework's flexible recurrent scales, we can customize the number of scales and make trade-offs between computation and quality depending on the application scenario. Extensive experiments with various datasets demonstrated the superiority of our proposed method over state-of-the-art approaches in various scenarios.
引用
收藏
页码:8076 / 8090
页数:15
相关论文
共 74 条
[21]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/CVPR.2018.00745, 10.1109/TPAMI.2019.2913372]
[22]   Progressive Spatial-temporal Collaborative Network for Video Frame Interpolation [J].
Hu, Mengshun ;
Jiang, Kui ;
Liao, Liang ;
Nie, Zhixiang ;
Xiao, Jing ;
Wang, Zheng .
PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2022, 2022, :2145-2153
[23]   Spatial-Temporal Space Hand-in-Hand: Spatial-Temporal Video Super-Resolution via Cycle-Projected Mutual Learning [J].
Hu, Mengshun ;
Jiang, Kui ;
Liao, Liang ;
Xiao, Jing ;
Jiang, Junjun ;
Wang, Zheng .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :3564-3573
[24]   Capturing Small, Fast-Moving Objects: Frame Interpolation via Recurrent Motion Enhancement [J].
Hu, Mengshun ;
Xiao, Jing ;
Liao, Liang ;
Wang, Zheng ;
Lin, Chia-Wen ;
Wang, Mi ;
Satoh, Shin'ichi .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (06) :3390-3406
[25]  
Hu MS, 2020, INT CONF ACOUST SPEE, P4347, DOI [10.1109/ICASSP40776.2020.9053223, 10.1109/icassp40776.2020.9053223]
[26]   Real-Time Intermediate Flow Estimation for Video Frame Interpolation [J].
Huang, Zhewei ;
Zhang, Tianyuan ;
Heng, Wen ;
Shi, Boxin ;
Zhou, Shuchang .
COMPUTER VISION - ECCV 2022, PT XIV, 2022, 13674 :624-642
[27]   LiteFlowNet: A Lightweight Convolutional Neural Network for Optical Flow Estimation [J].
Hui, Tak-Wai ;
Tang, Xiaoou ;
Loy, Chen Change .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :8981-8989
[28]   Iterative Residual Refinement for Joint Optical Flow and Occlusion Estimation [J].
Hur, Junhwa ;
Roth, Stefan .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5747-5756
[29]   FlowNet 2.0: Evolution of Optical Flow Estimation with Deep Networks [J].
Ilg, Eddy ;
Mayer, Nikolaus ;
Saikia, Tonmoy ;
Keuper, Margret ;
Dosovitskiy, Alexey ;
Brox, Thomas .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :1647-1655
[30]   Super SloMo: High Quality Estimation of Multiple Intermediate Frames for Video Interpolation [J].
Jiang, Huaizu ;
Sun, Deqing ;
Jampani, Varun ;
Yang, Ming-Hsuan ;
Learned-Miller, Erik ;
Kautz, Jan .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :9000-9008