A variable time-step IMEX-BDF2 SAV scheme and its sharp error estimate for the Navier-Stokes equations

被引:13
作者
Di, Yana [1 ,2 ,4 ]
Ma, Yuheng [3 ,4 ]
Shen, Jie [4 ,5 ]
Zhang, Jiwei [4 ,6 ]
机构
[1] Beijing Normal Univ, Res Ctr Math, Zhuhai 519087, Peoples R China
[2] BNU HKBU United Int Coll, Dept Math Sci, Zhuhai 519087, Peoples R China
[3] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[4] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
[5] Purdue Univ, Dept Math, W Lafayette, IN 47907 USA
[6] Wuhan Univ, Sch Math & Stat, Hubei Key Lab Computat Sci, Wuhan 430072, Peoples R China
关键词
Navier-Stokes; variable time stepping; error analysis; TURBULENCE; STABILITY;
D O I
10.1051/m2an/2023007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We generalize the implicit-explicit (IMEX) second-order backward difference (BDF2) scalar auxiliary variable (SAV) scheme for Navier-Stokes equation with periodic boundary conditions (Huang and Shen, SIAM J. Numer. Anal. 59 (2021) 2926-2954) to a variable time-step IMEX-BDF2 SAV scheme, and carry out a rigorous stability and convergence analysis. The key ingredients of our analysis are a new modified discrete Gronwall inequality, exploration of the discrete orthogonal convolution (DOC) kernels, and the unconditional stability of the proposed scheme. We derive global and local optimal H-1 error estimates in 2D and 3D, respectively. Our analysis provides a theoretical support for solving Navier-Stokes equations using variable time-step IMEX-BDF2 SAV schemes. We also design an adaptive time-stepping strategy, and provide ample numerical examples to confirm the effectiveness and efficiency of our proposed methods.
引用
收藏
页码:1143 / 1170
页数:28
相关论文
共 31 条
[1]   Space-time adaptive simulations for unsteady Navier-Stokes problems [J].
Berrone, S. ;
Marro, M. .
COMPUTERS & FLUIDS, 2009, 38 (06) :1132-1144
[2]  
CANUTO C, 1982, MATH COMPUT, V38, P67, DOI 10.1090/S0025-5718-1982-0637287-3
[3]   A SECOND ORDER BDF NUMERICAL SCHEME WITH VARIABLE STEPS FOR THE CAHN-HILLIARD EQUATION [J].
Chen, Wenbin ;
Wang, Xiaoming ;
Yan, Yue ;
Zhang, Zhuying .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2019, 57 (01) :495-525
[4]  
Deville M., 2002, High Order Methods for Incompressible Fluid Flow
[5]   Moving mesh finite element methods for the incompressible Navier-Stokes equations [J].
Di, Y ;
Li, R ;
Tang, T ;
Zhang, PW .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (03) :1036-1056
[6]   Adaptive time-step control for nonlinear fluid-structure interaction [J].
Failer, Lukas ;
Wick, Thomas .
JOURNAL OF COMPUTATIONAL PHYSICS, 2018, 366 :448-477
[7]  
Girault V., 2012, FINITE ELEMENT METHO, V5
[8]  
Glowinski R., 2003, Numerical Methods for Fluids (Part 3), V9, DOI DOI 10.1016/S1570-8659(03)09003-3
[9]  
Gunzburger MaxD., 1989, Computer Science and Scientific Computing
[10]   Time-integration for ALE simulations of Fluid-Structure Interaction problems: Stepsize and order selection based on the BDF [J].
Hay, A. ;
Etienne, S. ;
Garon, A. ;
Pelletier, D. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 295 :172-195