Optimizing Performance of Quantum Operations with Non-Markovian Decoherence: The Tortoise or the Hare?

被引:6
|
作者
Butler, Eoin P. [1 ,2 ]
Fux, Gerald E. [3 ,4 ]
Ortega-Taberner, Carlos [1 ,2 ]
Lovett, Brendon W. [3 ]
Keeling, Jonathan [3 ]
Eastham, Paul R. [1 ,2 ]
机构
[1] Trinity Coll Dublin, Sch Phys, Dublin, Ireland
[2] Trinity Technol & Enterprise Ctr, Trinity Quantum Alliance, Unit 16,Pearse St, Dublin, Ireland
[3] Univ St Andrews, Sch Phys & Astron, SUPA, St Andrews KY16 9SS, Scotland
[4] Abdus Salam Int Ctr Theoret Phys ICTP, Str Costiera 11, I-34151 Trieste, Italy
基金
爱尔兰科学基金会; 英国工程与自然科学研究理事会;
关键词
REDUCED DENSITY-MATRICES; TENSOR PROPAGATOR; TIME EVOLUTION; GRADIENT; DYNAMICS; STATES;
D O I
10.1103/PhysRevLett.132.060401
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The interaction between a quantum system and its environment limits our ability to control it and perform quantum operations on it. We present an efficient method to find optimal controls for quantum systems coupled to non-Markovian environments, by using the process tensor to compute the gradient of an objective function. We consider state transfer for a driven two -level system coupled to a bosonic environment, and characterize performance in terms of speed and fidelity. This allows us to determine the best achievable fidelity as a function of process duration. We show there can be a trade-off between speed and fidelity, and that slower processes can have higher fidelity by exploiting non-Markovian effects.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Quantum impurity models coupled to Markovian and non-Markovian baths
    Schiro, Marco
    Scarlatella, Orazio
    JOURNAL OF CHEMICAL PHYSICS, 2019, 151 (04)
  • [22] Unveiling the Markovian to non-Markovian transition with quantum collision models
    Magalhaes, Willames F.
    Neto, Carlos O. A. Ribeiro
    Bernardo, Bertulio de Lima
    PHYSICS OPEN, 2023, 15
  • [23] Quantum force estimation in arbitrary non-Markovian Gaussian baths
    Latune, C. L.
    Sinayskiy, I.
    Petruccione, F.
    PHYSICAL REVIEW A, 2016, 94 (05)
  • [24] Fluctuation theorems for non-Markovian quantum processes
    Leggio, B.
    Napoli, A.
    Breuer, H. -P.
    Messina, A.
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [25] Non-Markovian Quantum Trajectories: An Exact Result
    Bassi, Angelo
    Ferialdi, Luca
    PHYSICAL REVIEW LETTERS, 2009, 103 (05)
  • [26] Quantum non-Markovian behavior at the chaos border
    Garcia-Mata, Ignacio
    Pineda, Carlos
    Wisniacki, Diego A.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2014, 47 (11)
  • [27] Non-Markovian Evolution: a Quantum Walk Perspective
    Kumar, N. Pradeep
    Banerjee, Subhashish
    Srikanth, R.
    Jagadish, Vinayak
    Petruccione, Francesco
    OPEN SYSTEMS & INFORMATION DYNAMICS, 2018, 25 (03)
  • [28] Collision model for non-Markovian quantum trajectories
    Whalen, S. J.
    PHYSICAL REVIEW A, 2019, 100 (05)
  • [29] Experimental characterization of a non-Markovian quantum process
    Goswami, K.
    Giarmatzi, C.
    Monterola, C.
    Shrapnel, S.
    Romero, J.
    Costa, F.
    PHYSICAL REVIEW A, 2021, 104 (02)
  • [30] Quantum dephasing induced by non-Markovian random telegraph noise
    Cai, Xiangji
    SCIENTIFIC REPORTS, 2020, 10 (01)