Automatic lithology identification method based on efficient deep convolutional network

被引:10
作者
Guo, Yan [1 ]
Li, Zhuowu [1 ]
Lin, Weihua [2 ]
Zhou, Ji [1 ]
Feng, Shixiang [1 ]
Zhang, Luyu [2 ]
Liu, Fujiang [2 ]
机构
[1] China Univ Geosci Wuhan, Sch Comp Sci, Wuhan 430074, Hubei, Peoples R China
[2] China Univ Geosci Wuhan, Sch Geog & Informat Engn, Wuhan 430074, Hubei, Peoples R China
关键词
Lithology identification; Deep learning; Transfer learning; PyTorch; YOLOv5; CLASSIFICATION;
D O I
10.1007/s12145-023-00962-4
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Due to the complexity of the environment and the variability of rocks under natural conditions, it is difficult for geologists to obtain a rapid analysis and description of rocks. To this end, this study proposes a lithology identification method that is suitable for efficient computation and maintains good accuracy. The method uses deep learning and migration learning methods to build a lithology recognition model through PyTorch and YOLOv5 frameworks, and investigates the recognition of six types of rock data. The model achieves an accuracy of 90.30% on the validation set. The method was compared with five other commonly used methods which have the fewest network parameters and can recognise 176 rock images per second on a server (equipped with a Tesla T4 GPU).
引用
收藏
页码:1359 / 1372
页数:14
相关论文
共 31 条
[1]  
[Anonymous], 2013, FACIES PERMEABILITY
[2]  
Arya S., 1994, OPTIMAL ALGORITHM AP
[3]   Deep convolutions for in-depth automated rock typing [J].
Baraboshkin, Evgeny E. ;
Ismailova, Leyla S. ;
Orlov, Denis M. ;
Zhukovskaya, Elena A. ;
Kalmykov, Georgy A. ;
Khotylev, Oleg, V ;
Baraboshkin, Evgeny Yu ;
Koroteev, Dmitry A. .
COMPUTERS & GEOSCIENCES, 2020, 135
[4]   A Deep Learning Model for Quick and Accurate Rock Recognition with Smartphones [J].
Fan, Guangpeng ;
Chen, Feixiang ;
Chen, Danyu ;
Li, Yan ;
Dong, Yanqi .
MOBILE INFORMATION SYSTEMS, 2020, 2020
[5]  
Goyal A, 2021, Arxiv, DOI arXiv:2110.07641
[6]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[7]  
Hu J, 2018, PROC CVPR IEEE, P7132, DOI [10.1109/TPAMI.2019.2913372, 10.1109/CVPR.2018.00745]
[8]   Gradient-based learning applied to document recognition [J].
Lecun, Y ;
Bottou, L ;
Bengio, Y ;
Haffner, P .
PROCEEDINGS OF THE IEEE, 1998, 86 (11) :2278-2324
[9]   A transfer learning method for automatic identification of sandstone microscopic images [J].
Li, Na ;
Hao, Huizhen ;
Gu, Qing ;
Wang, Danru ;
Hu, Xiumian .
COMPUTERS & GEOSCIENCES, 2017, 103 :111-121
[10]  
Liu Z., 2022, arXiv