Chromatic Plasmonic Polarizer-Based Synapse for All-Optical Convolutional Neural Network

被引:24
作者
Guo, Junxiong [1 ]
Liu, Yu [5 ]
Lin, Lin [2 ]
Li, Shangdong [3 ]
Cai, Ji [1 ]
Chen, Jianbo [1 ,4 ]
Huang, Wen [2 ]
Lin, Yuan [2 ]
Xu, Jun [5 ]
机构
[1] Chengdu Univ, Inst Adv Study, Sch Elect Informat & Elect Engn, Chengdu 610106, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Integrated Circuit Sci & Engn, State Key Lab Elect Thin Films & Integrated Device, Chengdu 610054, Peoples R China
[3] Sun Yat Sen Univ, Sch Elect & Informat Technol, Sch Microelect, Guangzhou 510006, Peoples R China
[4] Soochow Univ, Engn Res Ctr Digital Imaging & Display, Minist Educ, Suzhou 215006, Peoples R China
[5] Tsinghua Univ, Sch Integrated Circuits, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
Surface plasmon polariton; Polarizer; Opticalsynapse; Optical convolutional neural network; INTELLIGENCE; GENERATION;
D O I
10.1021/acs.nanolett.3c02194
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Emergingmemory devices have been demonstrated as artificial synapsesfor neural networks. However, the process of rewriting these synapsesis often inefficient, in terms of hardware and energy usage. Herein,we present a novel surface plasmon resonance polarizer-based all-opticalsynapse for realizing convolutional filters and optical convolutionalneural networks. The synaptic device comprises nanoscale crossed goldarrays with varying vertical and horizontal arms that respond stronglyto the incident light's polarization angle. The presented synapsein an optical convolutional neural network achieved excellent performancein four different convolutional results for classifying the ModifiedNational Institute of Standards and Technology (MNIST) handwrittendigit data set. After training on 1,000 images, the network achieveda classification accuracy of over 98% when tested on a separate setof 10,000 images. This presents a promising approach for designingartificial neural networks with efficient hardware and energy consumption,low cost, and scalable fabrication.
引用
收藏
页码:9651 / 9656
页数:6
相关论文
共 28 条
[1]   Neuromorphic computing with multi-memristive synapses [J].
Boybat, Irem ;
Le Gallo, Manuel ;
Nandakumar, S. R. ;
Moraitis, Timoleon ;
Parnell, Thomas ;
Tuma, Tomas ;
Rajendran, Bipin ;
Leblebici, Yusuf ;
Sebastian, Abu ;
Eleftheriou, Evangelos .
NATURE COMMUNICATIONS, 2018, 9
[2]   Learning through ferroelectric domain dynamics in solid-state synapses [J].
Boyn, Soeren ;
Grollier, Julie ;
Lecerf, Gwendal ;
Xu, Bin ;
Locatelli, Nicolas ;
Fusil, Stephane ;
Girod, Stephanie ;
Carretero, Cecile ;
Garcia, Karin ;
Xavier, Stephane ;
Tomas, Jean ;
Bellaiche, Laurent ;
Bibes, Manuel ;
Barthelemy, Agnes ;
Saighi, Sylvain ;
Garcia, Vincent .
NATURE COMMUNICATIONS, 2017, 8
[3]   Engineering of human brain organoids with a functional vascular-like system [J].
Cakir, Bilal ;
Xiang, Yangfei ;
Tanaka, Yoshiaki ;
Kural, Mehmet H. ;
Parent, Maxime ;
Kang, Young-Jin ;
Chapeton, Kayley ;
Patterson, Benjamin ;
Yuan, Yifan ;
He, Chang-Shun ;
Raredon, Micha Sam B. ;
Dengelegi, Jake ;
Kim, Kun-Yong ;
Sun, Pingnan ;
Zhong, Mei ;
Lee, Sangho ;
Patra, Prabir ;
Hyder, Fahmeed ;
Niklason, Laura E. ;
Lee, Sang-Hun ;
Yoon, Young-Sup ;
Park, In-Hyun .
NATURE METHODS, 2019, 16 (11) :1169-+
[4]   Malus-metasurface-assisted polarization multiplexing [J].
Deng, Liangui ;
Deng, Juan ;
Guan, Zhiqiang ;
Tao, Jin ;
Chen, Yang ;
Yang, Yan ;
Zhang, Daxiao ;
Tang, Jibo ;
Li, Zhongyang ;
Li, Zile ;
Yu, Shaohua ;
Zheng, Guoxing ;
Xu, Hongxing ;
Qiu, Cheng-Wei ;
Zhang, Shuang .
LIGHT-SCIENCE & APPLICATIONS, 2020, 9 (01)
[5]   Chromatic Plasmonic Polarizers for Active Visible Color Filtering and Polarimetry [J].
Ellenbogen, Tal ;
Seo, Kwanyong ;
Crozier, Kenneth B. .
NANO LETTERS, 2012, 12 (02) :1026-1031
[6]   Parallel programming of an ionic floating-gate memory array for scalable neuromorphic computing [J].
Fuller, Elliot J. ;
Keene, Scott T. ;
Melianas, Armantas ;
Wang, Zhongrui ;
Agarwal, Sapan ;
Li, Yiyang ;
Tuchman, Yaakov ;
James, Conrad D. ;
Marinella, Matthew J. ;
Yang, J. Joshua ;
Salleo, Alberto ;
Talin, A. Alec .
SCIENCE, 2019, 364 (6440) :570-+
[7]   Two-dimensional materials for next-generation computing technologies [J].
Liu, Chunsen ;
Chen, Huawei ;
Wang, Shuiyuan ;
Liu, Qi ;
Jiang, Yu-Gang ;
Zhang, David Wei ;
Liu, Ming ;
Zhou, Peng .
NATURE NANOTECHNOLOGY, 2020, 15 (07) :545-557
[8]   Neural engineering - Real brains for real robots [J].
Mussa-Ivaldi, S .
NATURE, 2000, 408 (6810) :305-306
[9]   Towards spike-based machine intelligence with neuromorphic computing [J].
Roy, Kaushik ;
Jaiswal, Akhilesh ;
Panda, Priyadarshini .
NATURE, 2019, 575 (7784) :607-617
[10]   Deep learning [J].
Rusk, Nicole .
NATURE METHODS, 2016, 13 (01) :35-35