Prediction of incident atrial fibrillation in post-stroke patients using machine learning: a French nationwide study

被引:10
作者
Bisson, Arnaud [1 ,2 ,3 ]
Lemrini, Yassine [1 ]
El-Bouri, Wahbi [4 ]
Bodin, Alexandre [1 ]
Angoulvant, Denis [1 ,2 ]
Lip, Gregory Y. H. [4 ]
Fauchier, Laurent [1 ]
机构
[1] Ctr Hosp Reg Univ, Serv Cardiol, 2 Blvd Tonnelle, F-37000 Tours, France
[2] Univ Tours, Transplantat Immun Inflammat, EA4245, Tours, France
[3] Ctr Hosp Reg Orleans, Serv Cardiol, Orleans, France
[4] Univ Liverpool, Liverpool Heart & Chest Hosp, Liverpool Ctr Cardiovasc Sci, Liverpool, England
关键词
Atrial fibrillation; Machine learning; Ischemic stroke; Prediction; TRANSIENT ISCHEMIC ATTACK; HEART RHYTHM SOCIETY; EMBOLIC STROKE; RISK SCORE; PREVENTION; CONSENSUS; UPDATE;
D O I
10.1007/s00392-022-02140-w
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundTargeting ischemic strokes patients at risk of incident atrial fibrillation (AF) for prolonged cardiac monitoring and oral anticoagulation remains a challenge. Clinical risk scores have been developed to predict post-stroke AF with suboptimal performances. Machine learning (ML) models are developing in the field of AF prediction and may be used to discriminate post-stroke patients at risk of new onset AF. This study aimed to evaluate ML models for the prediction of AF and to compare predictive ability to usual clinical scores. MethodsBased on a French nationwide cohort of 240,459 ischemic stroke patients without AF at baseline from 2009 to 2012, ML models were trained on a train set and the best model was selected to be evaluate on the test set. Discrimination of the best model was evaluated using the C index. We finally compared our best model with previously described clinical scores. ResultsDuring a mean follow-up of 7.9 & PLUSMN; 11.5 months, 14,095 patients (mean age 77.6 & PLUSMN; 10.6; 50.3% female) developed incident AF. After training, the best ML model selected was a deep neural network with a C index of 0.77 (95% CI 0.76-0.78) on the test set. Compared to traditional clinical scores, the selected model was statistically significantly superior to the CHA(2)DS(2)-VASc score, Framingham risk score, HAVOC score and C2HEST score (P < 0.0001). The ability to predict AF was improved as shown by net reclassification index increase (P < 0.0001) and decision curve analysis. ConclusionsML algorithms predict incident AF post-stroke with a better ability than previously developed clinical scores. Graphic Abstract AF: atrial fibrillation; DNN: deep neural network; IS: ischemic stroke; KNN: K-nearest neighbors; LR: logistic regression; RFC: random forest classifier; XGBoost: extreme gradient boosting [GRAPHICS]
引用
收藏
页码:815 / 823
页数:9
相关论文
共 37 条
[1]  
Benjamin EJ, 2017, CIRCULATION, V135, pE146, DOI [10.1161/CIR.0000000000000558, 10.1161/CIR.0000000000000485, 10.1161/CIR.0000000000000530]
[2]  
Bishop Christopher M., 2006, Pattern recognition and machine learning
[3]   Prediction of Incident Atrial Fibrillation According to Gender in Patients With Ischemic Stroke From a Nationwide Cohort [J].
Bisson, Arnaud ;
Bodin, Alexandre ;
Clementy, Nicolas ;
Babuty, Dominique ;
Lip, Gregory Y. H. ;
Fauchier, Laurent .
AMERICAN JOURNAL OF CARDIOLOGY, 2018, 121 (04) :437-444
[4]   Relationship of Preexisting Cardiovascular Comorbidities to Newly Diagnosed Atrial Fibrillation After Ischemic Stroke [J].
Bisson, Arnaud ;
Clementy, Nicolas ;
Bodin, Alexandre ;
Angoulvant, Denis ;
Babuty, Dominique ;
Lip, Gregory Y. H. ;
Fauchier, Laurent .
STROKE, 2017, 48 (10) :2878-+
[5]   Atrial fibrillation in the UK: predicting costs of an emerging epidemic recognizing and forecasting the cost drivers of atrial fibrillation-related costs [J].
Burdett, Paul ;
Lip, Gregory Y. H. .
EUROPEAN HEART JOURNAL-QUALITY OF CARE AND CLINICAL OUTCOMES, 2022, 8 (02) :187-194
[6]   2021 Focused Update Consensus Guidelines of the Asia Pacific Heart Rhythm Society on Stroke Prevention in Atrial Fibrillation: Executive Summary * [J].
Chao, Tze-Fan ;
Joung, Boyoung ;
Takahashi, Yoshihide ;
Lim, Toon Wei ;
Choi, Eue-Keun ;
Chan, Yi-Hsin ;
Guo, Yutao ;
Sriratanasathavorn, Charn ;
Oh, Seil ;
Okumura, Ken ;
Lip, Gregory Y. H. .
THROMBOSIS AND HAEMOSTASIS, 2022, 122 (01) :20-47
[7]   Data-driven discovery and validation of circulating blood-based biomarkers associated with prevalent atrial fibrillation [J].
Chua, Winnie ;
Purmah, Yanish ;
Cardoso, Victor R. ;
Gkoutos, Georgios, V ;
Tull, Samantha P. ;
Neculau, Georgiana ;
Thomas, Mark R. ;
Kotecha, Dipak ;
Lip, Gregory Y. H. ;
Kirchhof, Paulus ;
Fabritz, Larissa .
EUROPEAN HEART JOURNAL, 2019, 40 (16) :1268-+
[8]   Breast cancer incidence using administrative data: correction with sensitivity and specificity [J].
Couris, Chantal Marie ;
Polazzi, Stephanie ;
Olive, Frederic ;
Remontet, Laurent ;
Bossard, Nadine ;
Gomez, Frederic ;
Schott, Anne-Marie ;
Mitton, Nicolas ;
Colonna, Marc ;
Trombert, Beatrice .
JOURNAL OF CLINICAL EPIDEMIOLOGY, 2009, 62 (06) :660-666
[9]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[10]   Dabigatran for Prevention of Stroke after Embolic Stroke of Undetermined Source [J].
Diener, H. -C. ;
Sacco, R. L. ;
Easton, J. D. ;
Granger, C. B. ;
Bernstein, R. A. ;
Uchiyama, S. ;
Kreuzer, J. ;
Cronin, L. ;
Cotton, D. ;
Grauer, C. ;
Brueckmann, M. ;
Chernyatina, M. ;
Donnan, G. ;
Ferro, J. M. ;
Grand, M. ;
Kallmuenzer, B. ;
Krupinski, J. ;
Lee, B. -C. ;
Lemmens, R. ;
Masjuan, J. ;
Odinak, M. ;
Saver, J. L. ;
Schellinger, P. D. ;
Toni, D. ;
Toyoda, K. .
NEW ENGLAND JOURNAL OF MEDICINE, 2019, 380 (20) :1906-1917