Multi-task meta label correction for time series prediction

被引:3
作者
Yang, Luxuan [1 ,2 ]
Gao, Ting [1 ,2 ]
Wei, Wei [3 ]
Dai, Min [4 ]
Fang, Cheng [1 ,2 ]
Duan, Jinqiao [5 ,6 ,7 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
[2] Huazhong Univ Sci & Technol, Ctr Math Sci, Wuhan 430074, Peoples R China
[3] Shanghai Jiao Tong Univ, Inst Nat Sci, Shanghai 200240, Peoples R China
[4] Wuhan Univ Technol, Sch Sci, Wuhan 430070, Peoples R China
[5] Great Bay Univ, Dept Math, Dongguan 523000, Peoples R China
[6] Great Bay Univ, Dept Phys, Dongguan 523000, Peoples R China
[7] Dongguan Key Lab Data Sci & Intelligent Med, Dept Lab, Dongguan 523000, Peoples R China
基金
中国国家自然科学基金;
关键词
Data visualization; Bi-level optimization; Meta-learning; Multi-task learning; RECURRENCE PLOTS;
D O I
10.1016/j.patcog.2024.110319
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Time series classification faces two unavoidable problems. One is partial feature information and the other is poor label quality, which may affect model performance. To address the above issues, we create a label correction method to time series data with meta -learning under a multi -task framework. There are three main contributions. First, we train the label correction model with a two -branch neural network in the outer loop. While in the model -agnostic inner loop, we use pre-existing classification models in a multi -task way and jointly update the meta -knowledge so as to help us achieve adaptive labeling on complex time series. Second, we devise new data visualization methods for both image patterns of the historical data and data in the prediction horizon. Finally, we test our method with various financial datasets, including XOM, S&P500, and SZ50. Results show that our method is more effective and accurate than some existing label correction techniques.
引用
收藏
页数:9
相关论文
共 35 条
[1]   Nonlinear dynamics and recurrence plots for detecting financial crisis [J].
Addo, Peter Martey ;
Billio, Monica ;
Guegan, Dominique .
NORTH AMERICAN JOURNAL OF ECONOMICS AND FINANCE, 2013, 26 :416-435
[2]   Deep learning and time series-to-image encoding for financial forecasting [J].
Barra, Silvio ;
Carta, Salvatore Mario ;
Corriga, Andrea ;
Podda, Alessandro Sebastian ;
Recupero, Diego Reforgiato .
IEEE-CAA JOURNAL OF AUTOMATICA SINICA, 2020, 7 (03) :683-692
[3]   Predicting stock market index using LSTM [J].
Bhandari, Hum Nath ;
Rimal, Binod ;
Pokhrel, Nawa Raj ;
Rimal, Ramchandra ;
Dahal, Keshab R. ;
Khatri, Rajendra K. C. .
MACHINE LEARNING WITH APPLICATIONS, 2022, 9
[4]  
Bounid S., 2022, 2022 INT C INT SYST, P1
[5]  
Chandra R., 2018, 2018 INT JOINT C NEU, P1
[6]  
Chen C, 2022, Arxiv, DOI arXiv:2207.11719
[7]  
Chen JF, 2016, INT C CLOUD COMP BIG, P87, DOI [10.1109/CCBD.2016.027, 10.1109/CCBD.2016.51]
[8]   RECURRENCE PLOTS OF DYNAMIC-SYSTEMS [J].
ECKMANN, JP ;
KAMPHORST, SO ;
RUELLE, D .
EUROPHYSICS LETTERS, 1987, 4 (09) :973-977
[9]  
Finn C, 2017, PR MACH LEARN RES, V70
[10]  
Gao Lucy, 2022, PR MACH LEARN RES