Probabilistic modeling of 10-min mean wind speed and its application in analytical simulation of snowdrift on building roofs

被引:1
作者
Li, Yuanyuan [1 ,2 ]
Mo, Huamei [1 ,2 ,3 ]
Zhang, Guolong [1 ,2 ]
Zhang, Qingwen [1 ,2 ]
Fan, Feng [1 ,2 ]
机构
[1] Harbin Inst Technol, Minist Educ, Key Lab Struct Dynam Behav & Control, Harbin 150090, Peoples R China
[2] Harbin Inst Technol, Minist Ind & Informat Technol, Key Lab Smart Prevent & Mitigat Civil Engn Disaste, Harbin 150090, Peoples R China
[3] Harbin Inst Technol, Sch Civil Engn, POB 2619,Haihe Rd,Nangang Dist, Harbin 150090, Peoples R China
基金
中国国家自然科学基金;
关键词
Probabilistic modeling; 10-min mean wind speed; Analytical simulation; Snowdrift; Ground-to-roof conversion factors; SNOW LOADS; TUNNEL TEST; FLAT ROOFS; DISTRIBUTIONS; WEIBULL; SITES; REDISTRIBUTION; PARAMETERS; TRANSPORT; REGION;
D O I
10.1016/j.jweia.2023.105614
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
The typical resolution for long-term wind speed records that are publicly available in China is daily, this is too coarse for a sound analytical simulation of snowdrift on building roofs. Take Harbin, China as an example, an algorithm was proposed in this study to address this issue, where the commonly-used 2-parameter Weibull distribution was applied to fit the distribution of 10-min mean wind speed. A parameter estimation method, which combines the method of moment and cumulative probability, was proposed to estimate the parameters of Weibull distribution using very limited information on wind speed. The fitted probability model was validated using high-resolution wind speed data by comparing the snowdrift estimated by the modeled wind speed and that estimated by the actual wind speed. Finally, an analytical simulation of snowdrift on a flat roof was carried out to illustrate the application of the proposed model, and the probabilistic characteristic of the derived ground-to-roof conversion factors for snow loads were analyzed. It is indicated that the proposed model is easy to implement and provides a good estimation of the snowdrift on building roofs, and the derived conversion factors could be satisfactorily modeled using a Generalized Extreme Value (GEV) distribution or a normal distribution.
引用
收藏
页数:14
相关论文
共 66 条
[1]   NEW LOOK AT STATISTICAL-MODEL IDENTIFICATION [J].
AKAIKE, H .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1974, AC19 (06) :716-723
[2]   A new method to estimate Weibull parameters for wind energy applications [J].
Akdag, Seyit A. ;
Dinler, Ali .
ENERGY CONVERSION AND MANAGEMENT, 2009, 50 (07) :1761-1766
[3]   Evaluating the suitability of wind speed probability distribution models: A case of study of east and southeast parts of Iran [J].
Alavi, Omid ;
Mohammadi, Kasra ;
Mostafaeipour, Ali .
ENERGY CONVERSION AND MANAGEMENT, 2016, 119 :101-108
[4]   Investigation of snow-induced collapse in Bozuyuk market [J].
ALMahdi, Fikrat ;
Dogangun, Adem ;
Genc, Fatih ;
Rasekh, Waheed ;
Timuragaoglu, Mehmet Omer .
ENGINEERING FAILURE ANALYSIS, 2020, 118
[5]  
[Anonymous], 2012, GB 50009-2012 Load Code for the Design of Building Structures
[6]   Deep assessment of wind speed distribution models: A case study of four sites in Algeria [J].
Aries, Nawel ;
Boudia, Sidi Mohammed ;
Ounis, Houdayfa .
ENERGY CONVERSION AND MANAGEMENT, 2018, 155 :78-90
[7]   Preliminary wind resource assessment in South Sudan using reanalysis data and statistical methods [J].
Ayik, A. ;
Ijumba, N. ;
Kabiri, C. ;
Goffin, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2021, 138
[8]   Assessment of Wind Energy Prospect by Weibull Distribution for Prospective Wind Sites in Australia [J].
Azad, Kalam ;
Rasul, Mohammad ;
Halder, Pobitra ;
Sutariya, J. .
2ND INTERNATIONAL CONFERENCE ON ENERGY AND POWER (ICEP2018), 2019, 160 :348-355
[9]   Modeling transient snowdrift development around complex three-dimensional structures [J].
Beyers, Meiring ;
Waechter, Bill .
JOURNAL OF WIND ENGINEERING AND INDUSTRIAL AERODYNAMICS, 2008, 96 (10-11) :1603-1615
[10]   Collapse of Katowice Fair Building [J].
Biegus, A. ;
Rykaluk, K. .
ENGINEERING FAILURE ANALYSIS, 2009, 16 (05) :1643-1654