Spectral optimization for weighted anisotropic problems with Robin conditions

被引:1
作者
Pellacci, Benedetta [1 ]
Pisante, Giovanni [1 ]
Schiera, Delia [2 ]
机构
[1] Univ Campania Luigi Vanvitelli, Dipartimento Matemat & Fis, viale A Lincoln 5, I-81100 Caserta, Italy
[2] Univ Lisbon, Dept Matemat, Inst Super Tecn, Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Weighted eigenvalues; Population dynamics; Survival threshold; Symmetrization; PRINCIPAL EIGENVALUE; DEGENERATE; SYMMETRIZATION; REARRANGEMENT; INEQUALITIES; MINIMIZATION; REGULARITY; EQUATIONS;
D O I
10.1016/j.jde.2023.09.030
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a weighted eigenvalue problem with anisotropic diffusion in bounded Lipschitz domains S2 c R-N, N >= 1, under Robin boundary conditions, proving the existence of two positive principal eigenvalues lambda(+/-) respectively associated with a positive and a negative eigenfunction. Next, we analyze the minimization of lambda(+/-) with respect to the sign-changing weight, showing that the optimal eigenvalues Lambda(+/-) are equal if the domain has a center of symmetry and the optimal weights are of bang-bang type, namely piece-wise constant functions, each one taking only two values. As a consequence, the problem is equivalent to the minimization with respect to the subsets of Omega satisfying a volume constraint. Then, we completely solve the optimization problem in one dimension, in the case of homogeneous Dirichlet or Neumann conditions, showing new phenomena induced by the presence of the anisotropic diffusion. The optimization problem for lambda(+/-) naturally arises in the study of the optimal spatial arrangement of resources for a species to survive in an heterogeneous habitat.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:303 / 338
页数:36
相关论文
共 48 条
  • [1] Convex symmetrization and applications
    Alvino, A
    Ferone, V
    Trombetti, G
    Lions, PL
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 1997, 14 (02): : 275 - 293
  • [2] Interior regularity results for inhomogeneous anisotropic quasilinear equations
    Antonini, Carlo Alberto
    Ciraolo, Giulio
    Farina, Alberto
    [J]. MATHEMATISCHE ANNALEN, 2023, 387 (3-4) : 1745 - 1776
  • [3] Isoperimetric inequalities, Wulff shape and related questions for strongly nonlinear elliptic operators
    Belloni, M
    Ferone, V
    Kawohl, B
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2003, 54 (05): : 771 - 783
  • [4] Analysis of the periodically fragmented environment model: I - Species persistence
    Berestycki, H
    Hamel, F
    Roques, L
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2005, 51 (01) : 75 - 113
  • [5] Some properties of monotone rearrangement with applications to elliptic equations in cylinders
    Berestycki, H
    Lachand-Robert, T
    [J]. MATHEMATISCHE NACHRICHTEN, 2004, 266 : 3 - 19
  • [6] Persistence criteria for populations with non-local dispersion
    Berestycki, Henri
    Coville, Jerome
    Hoang-Hung Vo
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2016, 72 (07) : 1693 - 1745
  • [7] Birindelli I, 2006, ADV DIFFERENTIAL EQU, V11, P91
  • [8] Evolution of anisotropic diffusion in two-dimensional heterogeneous environments
    Bouin, Emeric
    Legendre, Guillaume
    Lou, Yuan
    Slover, Nichole
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2021, 82 (05)
  • [9] A LOGISTIC EQUATION WITH NONLOCAL INTERACTIONS
    Caffarelli, Luis
    Dipierro, Serena
    Valdinoci, Enrico
    [J]. KINETIC AND RELATED MODELS, 2017, 10 (01) : 141 - 170
  • [10] THE EFFECTS OF SPATIAL HETEROGENEITY IN POPULATION-DYNAMICS
    CANTRELL, RS
    COSNER, C
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 1991, 29 (04) : 315 - 338