Diagnosis of Obstructive Sleep Apnea Using Feature Selection, Classification Methods, and Data Grouping Based Age, Sex, and Race

被引:4
|
作者
Sheta, Alaa [1 ]
Thaher, Thaer [2 ]
Surani, Salim R. [3 ]
Turabieh, Hamza [4 ]
Braik, Malik [5 ]
Too, Jingwei [6 ]
Abu-El-Rub, Noor [7 ]
Mafarjah, Majdi [8 ]
Chantar, Hamouda [9 ]
Subramanian, Shyam [10 ]
机构
[1] Southern Connecticut State Univ, Comp Sci Dept, New Haven, CT 06514 USA
[2] Arab Amer Univ, Dept Comp Syst Engn, POB 240, Jenin, Palestine
[3] Texas A&M Univ, Dept Pulm Crit Care & Sleep Med, College Stn, TX 77843 USA
[4] Univ Missouri, Sch Med, Hlth Management & Informat Dept, Columbia, MO 65212 USA
[5] Al Balqa Appl Univ, Dept Comp Sci, Salt 19117, Jordan
[6] Univ Teknikal Malaysia Melaka, Fac Elect Engn, Hang Tuah Jaya, Durian Tunggal 76100, Melaka, Malaysia
[7] Univ Kansas, Ctr Med Informat & Enterprise Analyt, Med Ctr, Kansas City, KS 66160 USA
[8] Birzeit Univ, Dept Comp Sci, POB 14, Birzeit, Palestine
[9] Sebha Univ, Fac Informat Technol, Sebha 18758, Libya
[10] Sutter Hlth, Pulm Crit Care & Sleep Med, Tracy, CA 95376 USA
关键词
obstructive sleep apnea; grouping; feature selection; machine learning; OPTIMIZATION ALGORITHM; GENDER; HYPERTENSION; MODEL;
D O I
10.3390/diagnostics13142417
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Obstructive sleep apnea (OSA) is a prevalent sleep disorder that affects approximately 3-7% of males and 2-5% of females. In the United States alone, 50-70 million adults suffer from various sleep disorders. OSA is characterized by recurrent episodes of breathing cessation during sleep, thereby leading to adverse effects such as daytime sleepiness, cognitive impairment, and reduced concentration. It also contributes to an increased risk of cardiovascular conditions and adversely impacts patient overall quality of life. As a result, numerous researchers have focused on developing automated detection models to identify OSA and address these limitations effectively and accurately. This study explored the potential benefits of utilizing machine learning methods based on demographic information for diagnosing the OSA syndrome. We gathered a comprehensive dataset from the Torr Sleep Center in Corpus Christi, Texas, USA. The dataset comprises 31 features, including demographic characteristics such as race, age, sex, BMI, Epworth score, M. Friedman tongue position, snoring, and more. We devised a novel process encompassing pre-processing, data grouping, feature selection, and machine learning classification methods to achieve the research objectives. The classification methods employed in this study encompass decision tree (DT), naive Bayes (NB), k-nearest neighbor (kNN), support vector machine (SVM), linear discriminant analysis (LDA), logistic regression (LR), and subspace discriminant (Ensemble) classifiers. Through rigorous experimentation, the results indicated the superior performance of the optimized kNN and SVM classifiers for accurately classifying sleep apnea. Moreover, significant enhancements in model accuracy were observed when utilizing the selected demographic variables and employing data grouping techniques. For instance, the accuracy percentage demonstrated an approximate improvement of 4.5%, 5%, and 10% with the feature selection approach when applied to the grouped data of Caucasians, females, and individuals aged 50 or below, respectively. Furthermore, a comparison with prior studies confirmed that effective data grouping and proper feature selection yielded superior performance in OSA detection when combined with an appropriate classification method. Overall, the findings of this research highlight the importance of leveraging demographic information, employing proper feature selection techniques, and utilizing optimized classification models for accurate and efficient OSA diagnosis.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis
    Li-Fei Chen
    Chao-Ton Su
    Kun-Huang Chen
    Pa-Chun Wang
    Neural Computing and Applications, 2012, 21 : 2087 - 2096
  • [2] Particle swarm optimization for feature selection with application in obstructive sleep apnea diagnosis
    Chen, Li-Fei
    Su, Chao-Ton
    Chen, Kun-Huang
    Wang, Pa-Chun
    NEURAL COMPUTING & APPLICATIONS, 2012, 21 (08) : 2087 - 2096
  • [3] Feature selection on single-lead ECG for obstructive sleep apnea diagnosis
    Guruler, Huseyin
    Sahin, Mesut
    Ferikoglu, Abdullah
    TURKISH JOURNAL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCES, 2014, 22 (02) : 465 - 478
  • [4] Machine-learning-based classification of obstructive sleep apnea using 19-channel sleep EEG data
    Kim, Dongyeop
    Park, Ji Yong
    Song, Young Wook
    Kim, Euijin
    Kim, Sungkean
    Joo, Eun Yeon
    SLEEP MEDICINE, 2024, 124 : 323 - 330
  • [5] Diagnosis of obstructive sleep apnea in children based on the XGBoost algorithm using nocturnal heart rate and blood oxygen feature
    Ye, Pengfei
    Qin, Han
    Zhan, Xiaojun
    Wang, Zhan
    Liu, Chang
    Song, Beibei
    Kong, Yaru
    Jia, Xinbei
    Qi, Yuwei
    Ji, Jie
    Chang, Li
    Ni, Xin
    Tai, Jun
    AMERICAN JOURNAL OF OTOLARYNGOLOGY, 2023, 44 (02)
  • [6] Comparing of Feature Selection and Classification Methods on Report-Based Subhealth Data
    Huang, Li
    Yan, Shixing
    Yuan, Jiamin
    Zuo, Zhiya
    Xu, Fuping
    Lin, Yanzhao
    Yang, Mary Qu
    Yang, Zhimin
    Li, Guo-Zheng
    2016 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE (BIBM), 2016, : 1356 - 1358
  • [7] Machine learning based severity classification of obstructive sleep apnea patients using awake EEG
    Nassehi, Farhad
    Eken, Aykut
    Atalay, Nart Bedin
    Firat, Hikmet
    Erogul, Osman
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 96
  • [8] A Hybrid Feature Selection and Extraction Methods for Sleep Apnea Detection Using Bio-Signals
    Li, Xilin
    Ling, Sai Ho
    Su, Steven
    SENSORS, 2020, 20 (15) : 1 - 14
  • [9] Sleep prediction using data from oximeter, accelerometer and snoring for portable monitor obstructive sleep apnea diagnosis
    Domingues, Diego Munduruca
    Rocha, Paloma Rodrigues
    Miachon, Ana Claudia M. V.
    Giampa, Sara Quaglia de Campos
    Soares, Filipe
    Genta, Pedro R.
    Lorenzi-Filho, Geraldo
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [10] An Overview of Methods for Feature Selection Based on Mutual Information for Stream Data Classification
    Wankhade, Kapil
    Rane, Dhiraj
    Thool, Ravindra
    2013 INTERNATIONAL CONFERENCE ON COMMUNICATION SYSTEMS AND NETWORK TECHNOLOGIES (CSNT 2013), 2013, : 630 - 634