Excellent cryogenic magnetocaloric properties in heavy rare-earth based HRENiGa2 (HRE = Dy, Ho, or Er) compounds

被引:63
作者
Guo, Dan [1 ,2 ,3 ,4 ,5 ,6 ]
Moreno-Ramirez, Luis M. [3 ]
Law, Jia-Yan [3 ]
Zhang, Yikun [1 ,2 ,4 ,5 ,6 ]
Franco, Victorino [3 ]
机构
[1] Hangzhou Dianzi Univ, Key Lab Novel Mat Sensor Zhejiang Prov, Hangzhou 310012, Peoples R China
[2] Hangzhou Dianzi Univ, Sch Elect & Informat Engn, Hangzhou 310012, Peoples R China
[3] Univ Seville, Dept Fis Mat Condensada, ICMS CSIC, POB 1065, Seville 41080, Spain
[4] Shanghai Univ, State Key Lab Adv Special Steels, Shanghai 200072, Peoples R China
[5] Shanghai Univ, Shanghai Key Lab Adv Ferromet, Shanghai 200072, Peoples R China
[6] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200072, Peoples R China
基金
中国国家自然科学基金;
关键词
rare-earth-nickel-gallides; magnetocaloric effect; magnetic phase transitions; MAGNETIC-PROPERTIES; REFRIGERANT CAPACITY; CRYSTAL-STRUCTURE; GD; RE; PERFORMANCES; ACHIEVEMENT; TRANSITIONS; BEHAVIOR; ORDER;
D O I
10.1007/s40843-022-2095-6
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
RENiX2 compounds, where RE = rare-earth element and X = p-block element, have been highly regarded for cryogenic magnetocaloric applications. Depending on the elements, they can crystallize in CeNiSi2-type, NdNiGa2-type, or MgCuAl2-type crystal structures, showing different types of magnetic ordering and thus affect their magnetic properties. Regarding the magnetocaloric effect, MgCuAl2-type aluminides show larger values than those of the CeNiSi2-type silicides and the NdNiGa2-type gallides due to the favored ferromagnetic ground state. However, RENiGa2 gallides can crystallize in either NdNiGa2- or MgCuAl2-type structures depending on the RE element. In this work, we select heavy RE (HRE) elements for exploring the microstructure, magnetic ordering and magnetocaloric performance of HRENiGa2 (HRE = Dy, Ho or Er) gallides. They all crystallize in the desired MgCuAl2-type crystal structure which undergoes a second-order transition from ferro- to para-magnetic state with increasing temperature. The maximum isothermal entropy change (vertical bar Delta S-iso(max)vertical bar) values are 6.2, 10.4, and 11.4 J kg(-1) K-1 (0-5 T) for DyNiGa2, HoNiGa2, and ErNiGa2, respectively, which are comparable to many recently reported cryogenic magnetocaloric materials. Particularly, the excellent magnetocaloric properties of HoNiGa2 and ErNiGa2 compounds, including their composite, fall in the temperature range that enables them for the in-demand hydrogen liquefaction systems.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 61 条
[1]   Enhanced refrigerant capacity and magnetic entropy flattening using a two-amorphous FeZrB(Cu) composite [J].
Alvarez, Pablo ;
Sanchez Llamazares, Jose L. ;
Gorria, Pedro ;
Blanco, Jesus A. .
APPLIED PHYSICS LETTERS, 2011, 99 (23)
[2]   ON A GENERALISED APPROACH TO 1ST AND 2ND ORDER MAGNETIC TRANSITIONS [J].
BANERJEE, SK .
PHYSICS LETTERS, 1964, 12 (01) :16-17
[3]   The Gd-Ni-Ga system at 870 K as a representative of rare-earth nickel gallides: Crystal structure and magnetic properties [J].
Chen, Tianyu ;
Yao, Jinlei ;
Knotko, A., V ;
Yapaskurt, V. O. ;
Morozkin, A., V .
JOURNAL OF SOLID STATE CHEMISTRY, 2022, 305
[4]   Machine-learning-guided discovery of the gigantic magnetocaloric effect in HoB2 near the hydrogen liquefaction temperature [J].
de Castro, Pedro Baptista ;
Terashima, Kensei ;
Yamamoto, Takafumi D. ;
Hou, Zhufeng ;
Iwasaki, Suguru ;
Matsumoto, Ryo ;
Adachi, Shintaro ;
Saito, Yoshito ;
Song, Peng ;
Takeya, Hiroyuki ;
Takano, Yoshihiko .
NPG ASIA MATERIALS, 2020, 12 (01)
[5]   Large magnetocaloric effect of GdNiAl2 compound [J].
Dembele, S. N. ;
Ma, Z. ;
Shang, Y. F. ;
Fu, H. ;
Balfour, E. A. ;
Hadimani, R. L. ;
Jiles, D. C. ;
Teng, B. H. ;
Luo, Y. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2015, 391 :191-194
[6]   Magnetocaloric effect of the ternary Dy, Ho and Er platinum gallides [J].
Franca, E. L. T. ;
dos Santos, A. O. ;
Coelho, A. A. ;
da Silva, L. M. .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2016, 401 :1088-1092
[7]   Magnetocaloric effect: From materials research to refrigeration devices [J].
Franco, V. ;
Blazquez, J. S. ;
Ipus, J. J. ;
Law, J. Y. ;
Moreno-Ramirez, L. M. ;
Conde, A. .
PROGRESS IN MATERIALS SCIENCE, 2018, 93 :112-232
[8]   The Magnetocaloric Effect and Magnetic Refrigeration Near Room Temperature: Materials and Models [J].
Franco, V. ;
Blazquez, J. S. ;
Ingale, B. ;
Conde, A. .
ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 42, 2012, 42 :305-342
[9]   Scaling laws for the magnetocaloric effect in second order phase transitions: From physics to applications for the characterization of materials [J].
Franco, V. ;
Conde, A. .
INTERNATIONAL JOURNAL OF REFRIGERATION-REVUE INTERNATIONALE DU FROID, 2010, 33 (03) :465-473
[10]   Material-based figure of merit for caloric materials [J].
Griffith, L. D. ;
Mudryk, Y. ;
Slaughter, J. ;
Pecharsky, V. K. .
JOURNAL OF APPLIED PHYSICS, 2018, 123 (03)