Chromatin accessibility in the Drosophila embryo is determined by transcription factor pioneering and enhancer activation

被引:28
作者
Brennan, Kaelan J. [1 ]
Weilert, Melanie [1 ]
Krueger, Sabrina [1 ]
Pampari, Anusri [2 ]
Liu, Hsiao-yun [3 ]
Yang, Ally W. H. [4 ]
Morrison, Jason A. [1 ]
Hughes, Timothy R. [4 ]
Rushlow, Christine A. [3 ]
Kundaje, Anshul [2 ,5 ]
Zeitlinger, Julia [1 ,6 ]
机构
[1] Stowers Inst Med Res, Kansas City, MO 64110 USA
[2] Stanford Univ, Dept Comp Sci, Palo Alto, CA 94305 USA
[3] NYU, Dept Biol, New York, NY 10003 USA
[4] Univ Toronto, Donnelly Ctr, Toronto, ON M5S 3E1, Canada
[5] Stanford Univ, Dept Genet, Palo Alto, CA 94305 USA
[6] Univ Kansas, Med Ctr, Dept Pathol & Lab Med, Kansas City, KS 66160 USA
基金
美国国家卫生研究院; 加拿大健康研究院;
关键词
UNIVERSAL DNA MICROARRAYS; FACTOR-BINDING; GENE-EXPRESSION; ZYGOTIC GENOME; REGULATORY ELEMENTS; DORSAL; ZELDA; GAGA; CAPICUA; DOMAIN;
D O I
10.1016/j.devcel.2023.07.007
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Chromatin accessibility is integral to the process by which transcription factors (TFs) read out cis-regulatory DNA sequences, but it is difficult to differentiate between TFs that drive accessibility and those that do not. Deep learning models that learn complex sequence rules provide an unprecedented opportunity to dissect this problem. Using zygotic genome activation in Drosophila as a model, we analyzed high-resolution TF binding and chromatin accessibility data with interpretable deep learning and performed genetic validation experiments. We identify a hierarchical relationship between the pioneer TF Zelda and the TFs involved in axis patterning. Zelda consistently pioneers chromatin accessibility proportional to motif affinity, whereas patterning TFs augment chromatin accessibility in sequence contexts where they mediate enhancer activation. We conclude that chromatin accessibility occurs in two tiers: one through pioneering, which makes enhancers accessible but not necessarily active, and the second when the correct combination of TFs leads to enhancer activation.
引用
收藏
页码:1898 / +
页数:29
相关论文
共 168 条
[1]  
Abadi M., 2016, arXiv, DOI [10.48550/arXiv.1603.04467, DOI 10.48550/ARXIV.1603.04467]
[2]  
ADAMS CC, 1995, MOL CELL BIOL, V15, P1405
[3]   Capicua DNA-binding sites are general response elements for RTK signaling in Drosophila [J].
Ajuria, Leiore ;
Nieva, Claudia ;
Winkler, Clint ;
Kuo, Dennis ;
Samper, Nuria ;
Jose Andreu, Maria ;
Helman, Aharon ;
Gonzalez-Crespo, Sergio ;
Paroush, Ze'ev ;
Courey, Albert J. ;
Jimenez, Gerardo .
DEVELOPMENT, 2011, 138 (05) :915-924
[4]  
Alexandari A.M., 2023, De novo distillation of thermodynamic affinity from deep learning regulatory sequence models of in vivo protein-DNA binding, DOI [10.1101/2023.05.11.540401, DOI 10.1101/2023.05.11.540401]
[5]   Interpretation of allele-specific chromatin accessibility using cell state-aware deep learning [J].
Atak, Zeynep Kalender ;
Taskiran, Ibrahim Ihsan ;
Demeulemeester, Jonas ;
Flerin, Christopher ;
Mauduit, David ;
Minnoye, Liesbeth ;
Hulselmans, Gert ;
Christiaens, Valerie ;
Ghanem, Ghanem-Elias ;
Wouters, Jasper ;
Aerts, Stein .
GENOME RESEARCH, 2021, 31 (06) :1082-1096
[6]   Base-resolution models of transcription-factor binding reveal soft motif syntax [J].
Avsec, Ziga ;
Weilert, Melanie ;
Shrikumar, Avanti ;
Krueger, Sabrina ;
Alexandari, Amr ;
Dalal, Khyati ;
Fropf, Robin ;
McAnany, Charles ;
Gagneur, Julien ;
Kundaje, Anshul ;
Zeitlinger, Julia .
NATURE GENETICS, 2021, 53 (03) :354-+
[7]   Diversity and Complexity in DNA Recognition by Transcription Factors [J].
Badis, Gwenael ;
Berger, Michael F. ;
Philippakis, Anthony A. ;
Talukder, Shaheynoor ;
Gehrke, Andrew R. ;
Jaeger, Savina A. ;
Chan, Esther T. ;
Metzler, Genita ;
Vedenko, Anastasia ;
Chen, Xiaoyu ;
Kuznetsov, Hanna ;
Wang, Chi-Fong ;
Coburn, David ;
Newburger, Daniel E. ;
Morris, Quaid ;
Hughes, Timothy R. ;
Bulyk, Martha L. .
SCIENCE, 2009, 324 (5935) :1720-1723
[8]   Coregulation of Transcription Factor Binding and Nucleosome Occupancy through DNA Features of Mammalian Enhancers [J].
Barozzi, Iros ;
Simonatto, Marta ;
Bonifacio, Silvia ;
Yang, Lin ;
Rohs, Remo ;
Ghisletti, Serena ;
Natoli, Gioacchino .
MOLECULAR CELL, 2014, 54 (05) :844-857
[9]   Genome organization controls transcriptional dynamics during development [J].
Batut, Philippe J. ;
Bing, Xin Yang ;
Sisco, Zachary ;
Raimundo, Joao ;
Levo, Michal ;
Levine, Michael S. .
SCIENCE, 2022, 375 (6580) :566-+
[10]   The control of transcriptional memory by stable mitotic bookmarking [J].
Bellec, Maelle ;
Dufourt, Jeremy ;
Hunt, George ;
Lenden-Hasse, Helene ;
Trullo, Antonio ;
El Aabidine, Amal Zine ;
Lamarque, Marie ;
Gaskill, Marissa M. ;
Faure-Gautron, Heloise ;
Mannervik, Mattias ;
Harrison, Melissa M. ;
Andrau, Jean-Christophe ;
Favard, Cyril ;
Radulescu, Ovidiu ;
Lagha, Mounia .
NATURE COMMUNICATIONS, 2022, 13 (01)