ON A ONE-PARAMETER CLASS OF COSINE POLYNOMIALS

被引:0
作者
Alzer, Horst [1 ]
Kwong, Man Kam [2 ]
机构
[1] Morsbacher Str 10, D-51545 Waldbrol, Germany
[2] Hong Kong Polytech Univ, Dept Appl Math, Hong Kong, Peoples R China
关键词
Cosine polynomials; inequalities; SERIES;
D O I
10.17323/1609-4514-2023-23-1-1-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove: Let a >= 0 be a real number. For any integer n >= 2 and any real x is an element of (0, pi), we have 1 + cos(x) + Sigma(n)(k=2) cos(kx)/k+a > 1/(a+2)(a+3). The lower bound is sharp. This extends a result of Brown and Koumandos, who proved the inequality for the special case a = 0.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 11 条
[1]   On Young's inequality [J].
Alzer, Horst ;
Kwong, Man Kam .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 469 (02) :480-492
[2]  
[Anonymous], 1997, THESIS U WURZBURG
[3]  
ASKEY R, 1986, MATH SURVEYS MONOGRA, V21, P7
[4]  
Askey R.A., 1975, ORTHOGONAL POLYNOMIA
[5]   On a monotonic trigonometric sum [J].
Brown, G ;
Koumandos, S .
MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02) :109-119
[6]   A functional bound for Young's cosine polynomial [J].
Fong, J. Z. Y. ;
Lee, T. Y. ;
Wong, P. X. .
ACTA MATHEMATICA HUNGARICA, 2020, 160 (02) :337-342
[7]   NONNEGATIVE SUMS OF COSINE ULTRASPHERICAL AND JACOBI POLYNOMIALS [J].
GASPER, G .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1969, 26 (01) :60-&
[8]  
Milovanovic GV., 1994, Topics in polynomials: Extremal Problems, Inequalities, Zeros
[9]   On the segment in power series, that remains limited in a circle [J].
Rogosinski, W ;
Szego, G .
MATHEMATISCHE ZEITSCHRIFT, 1928, 28 :73-94
[10]  
Van der Waerden BL., 1971, Algebra