High-Quality Laser-Accelerated Ion Beams from Structured Targets

被引:2
|
作者
Matys, Martin [1 ,2 ]
Psikal, Jan [1 ,2 ]
Nishihara, Katsunobu [3 ]
Klimo, Ondrej [1 ,2 ]
Jirka, Martin [1 ,2 ]
Valenta, Petr [1 ,2 ]
Bulanov, Sergei V. [1 ,4 ]
机构
[1] ELI Beamlines Facil, Extreme Light Infrastruct ERIC, Za Radnici 835, Dolni Brezany 25241, Czech Republic
[2] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Brehova 7, Prague 11519, Czech Republic
[3] Osaka Univ, Inst Laser Engn, Osaka 5650871, Japan
[4] Natl Inst Quantum Sci & Technol, Kansai Photon Sci Inst, 8 1 7 Umemidai, Kizugawa, Kyoto 6190215, Japan
关键词
high quality; monoenergetic; ion acceleration; laser-driven; plasma; low divergence; particle-in-cell; instability; steep front; plasma shutter; RICHTMYER-MESHKOV INSTABILITY; ULTRA-INTENSE; TAYLOR INSTABILITY; FAST IGNITION; GENERATION; RADIATION; ENERGY; PULSE; PHYSICS; DRIVEN;
D O I
10.3390/photonics10010061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this work, we reviewed our results on the prospect of increasing the quality of ion acceleration driven by high-intensity laser pulses using low-Z structured targets. It is shown that the radiation pressure acceleration mechanism dominates over target normal sheath acceleration for assumed laser target parameters when the laser intensity is high enough. The target thickness is optimized for this regime and double-layer structure is investigated. When a corrugation is fabricated on the interface of such a target, a relativistic instability with Rayleigh-Taylor and Richtmyer-Meshkov like features can be driven by the target interaction with a high intensity laser pulse. The proper development of this instability leads to the generation of a collimated quasi-monoenergetic ion beam with lower emittance, divergence, and energy spread compared to a single and double-layer target with planar interface. A steep-front laser pulse is used in our simulations to mitigate other type of instabilities arising at the target surface from the laser-target interaction. We discuss the use of a plasma shutter to generate the required pulse profile, which also locally increases intensity. The obtained shape improves the ion acceleration, including higher maximal energy and lower beam divergence, in our simulation of a high-Z target.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] Numerical modeling and applications of laser-accelerated ion beams
    Lefebvre, E.
    d'Humieres, E.
    Gremillet, L.
    Gremillet, L.
    Fritzler, S.
    Malka, V.
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (1-2) : 60 - 63
  • [2] Laser-accelerated ions from layered targets
    Gizzi, L. A.
    Betti, S.
    Foerster, E.
    Giulietti, A.
    Giulietti, D.
    Kaempfer, T.
    Koester, P.
    Labate, L.
    Levato, T.
    Luebcke, A.
    Robinson, A. P. L.
    Uschmann, I.
    Zamponi, F.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2010, 620 (01) : 83 - 87
  • [3] Ultra-intense laser-accelerated ion beams for high-gain inertial fusion: the effect of the ion mass on the beam properties
    Badziak, Jan
    Domanski, Jaroslaw
    NUCLEAR FUSION, 2022, 62 (08)
  • [4] Laser accelerated, high quality ion beams
    Roth, M.
    Blazevic, A.
    Brambrink, E.
    Geissel, M.
    Cowan, T. E.
    Fuchs, J.
    Kemp, A.
    Ruhl, H.
    Audebert, P.
    Cobble, J.
    Fernandez, J.
    Hegelich, M.
    Letzring, S.
    Ledingham, K.
    McKenna, P.
    Clarke, R.
    Neely, D.
    Karsch, S.
    Habs, D.
    Schreiber, J.
    HYPERFINE INTERACTIONS, 2005, 162 (1-4): : 45 - 53
  • [5] Laser Accelerated, High Quality Ion Beams
    M. Roth
    A. Blazevic
    E. Brambrink
    M. Geissel
    T. E. Cowan
    J. Fuchs
    A. Kemp
    H. Ruhl
    P. Audebert
    J. Cobble
    J. Fernandez
    M. Hegelich
    S. Letzring
    K. Ledingham
    P. McKenna
    R. Clarke
    D. Neely
    S. Karsch
    D. Habs
    J. Schreiber
    Hyperfine Interactions, 2005, 162 : 45 - 53
  • [6] Instrumentation for diagnostics and control of laser-accelerated proton (ion) beams
    Bolton, P. R.
    Borghesi, M.
    Brenner, C.
    Carroll, D. C.
    De Martinis, C.
    Flacco, A.
    Floquet, V.
    Fuchs, J.
    Gallegos, P.
    Giove, D.
    Green, J. S.
    Green, S.
    Jones, B.
    Kirby, D.
    McKenna, P.
    Neely, D.
    Nuesslin, F.
    Prasad, R.
    Reinhardt, S.
    Roth, M.
    Schramm, U.
    Scott, G. G.
    Ter-Avetisyan, S.
    Tolley, M.
    Turchetti, G.
    Wilkens, J. J.
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2014, 30 (03): : 255 - 270
  • [7] Preparation of graphene on SiC by laser-accelerated pulsed ion beams*
    Zhou, Danqing
    Li, Dongyu
    Chen, Yuhan
    Wu, Minjian
    Yang, Tong
    Cheng, Hao
    Li, Yuze
    Chen, Yi
    Li, Yue
    Geng, Yixing
    Zhao, Yanying
    Lin, Chen
    Yan, Xueqing
    Zhao, Ziqiang
    CHINESE PHYSICS B, 2021, 30 (11)
  • [8] Focusing of short-pulse high-intensity laser-accelerated proton beams
    Bartal, Teresa
    Foord, Mark E.
    Bellei, Claudio
    Key, Michael H.
    Flippo, Kirk A.
    Gaillard, Sandrine A.
    Offermann, Dustin T.
    Patel, Pravesh K.
    Jarrott, Leonard C.
    Higginson, Drew P.
    Roth, Markus
    Otten, Anke
    Kraus, Dominik
    Stephens, Richard B.
    McLean, Harry S.
    Giraldez, Emilio M.
    Wei, Mingsheng S.
    Gautier, Donald C.
    Beg, Farhat N.
    NATURE PHYSICS, 2012, 8 (02) : 139 - 142
  • [9] Effect of a nanometer scale plasma on laser-accelerated ion beams
    Levy, A.
    Nuter, R.
    Ceccotti, T.
    Combis, P.
    Drouin, M.
    Gremillet, L.
    Monot, P.
    Popescu, H.
    Reau, F.
    Lefebvre, E.
    Martin, P.
    NEW JOURNAL OF PHYSICS, 2009, 11
  • [10] Radiochromic film imaging spectroscopy of laser-accelerated proton beams
    Nuernberg, F.
    Schollmeier, M.
    Brambrink, E.
    Blazevic, A.
    Carroll, D. C.
    Flippo, K.
    Gautier, D. C.
    Geissel, M.
    Harres, K.
    Hegelich, B. M.
    Lundh, O.
    Markey, K.
    McKenna, P.
    Neely, D.
    Schreiber, J.
    Roth, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2009, 80 (03)