A comprehensive model for assessing and classifying patients with thrombotic microangiopathy: the TMA-INSIGHT score

被引:3
作者
Addad, Vanessa Vilani [1 ]
Palma, Lilian Monteiro Pereira [2 ]
Vaisbich, Maria Helena [3 ]
Barbosa, Abner Macola Pacheco [1 ]
da Rocha, Naila Camila [1 ]
Cardoso, Marilia Mastrocolla de Almeida [4 ]
de Almeida, Juliana Tereza Coneglian [4 ]
de Sordi, Monica A. P. de Paula [4 ]
Machado-Rugolo, Juliana [4 ]
Arantes, Lucas Frederico [4 ]
de Andrade, Luis Gustavo Modelli [1 ]
机构
[1] Univ Estadual Paulista, Dept Internal Med, UNESP, Rubiao Jr S-N, BR-18618970 Botucatu, SP, Brazil
[2] Univ Estadual Campinas, Dept Pediat, R Tessalia Vieira Camargo 126,Cidade Univ, BR-13083887 Campinas, SP, Brazil
[3] Univ Sao Paulo, Child Inst, Pediat Nephrol Serv, Av Dr Eneas Carvalho Aguiar, 647, BR-05403000 Sao Paulo, SP, Brazil
[4] Hlth Technol Assessment Ctr Hosp Clin HCFMB, Botucatu, SP, Brazil
关键词
Thrombotic microangiopathy; Thrombotic Thrombocytopenic Purpura; Shiga toxin-mediated hemolytic uremic syndrome; Complement mediated TMA; Atypical hemolytic uremic syndrome; HEMOLYTIC-UREMIC SYNDROME; DIAGNOSIS; OUTCOMES;
D O I
10.1186/s12959-023-00564-6
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Background Thrombotic Microangiopathy (TMA) is a syndrome characterized by the presence of anemia, thrombocytopenia and organ damage and has multiple etiologies. The primary aim is to develop an algorithm to classify TMA (TMA-INSIGHT score). Methods This was a single-center retrospective cohort study including hospitalized patients with TMA at a single center. We included all consecutive patients diagnosed with TMA between 2012 and 2021. TMA was defined based on the presence of anemia (hemoglobin level < 10 g/dL) and thrombocytopenia (platelet count < 150,000/mu L), signs of hemolysis, and organ damage. We classified patients in eight categories: infections; Malignant Hypertension; Transplant; Malignancy; Pregnancy; Thrombotic Thrombocytopenic Purpura (TTP); Shiga toxin-mediated hemolytic uremic syndrome (STEC-SHU) and Complement Mediated TMA (aHUS). We fitted a model to classify patients using clinical characteristics, biochemical exams, and mean arterial pressure at presentation. Results We retrospectively retrieved TMA phenotypes using automatic strategies in electronic health records in almost 10 years (n = 2407). Secondary TMA was found in 97.5% of the patients. Primary TMA was found in 2.47% of the patients (TTP and aHUS). The best model was LightGBM with accuracy of 0.979, and multiclass ROC-AUC of 0.966. The predictions had higher accuracy in most TMA classes, although the confidence was lower in aHUS and STEC-HUS cases. Conclusion Secondary conditions were the most common etiologies of TMA. We retrieved comorbidities, associated conditions, and mean arterial pressure to fit a model to predict TMA and define TMA phenotypic characteristics. This is the first multiclass model to predict TMA including primary and secondary conditions.
引用
收藏
页数:12
相关论文
共 21 条
[11]   Atypical hemolytic uremic syndrome and C3 glomerulopathy: conclusions from a "Kidney Disease: Improving Global Outcomes" (KDIGO) Controversies Conference [J].
Goodship, Timothy H. J. ;
Cook, H. Terence ;
Fakhouri, Fadi ;
Fervenza, Fernando C. ;
Fremeaux-Bacchi, Veronique ;
Kavanagh, David ;
Nester, Carla M. ;
Noris, Marina ;
Pickering, Matthew C. ;
de Cordoba, Santiago Rodriguez ;
Roumenina, Lubka T. ;
Sethi, Sanjeev ;
Smith, Richard J. H. .
KIDNEY INTERNATIONAL, 2017, 91 (03) :539-551
[12]   What is the impact of blood pressure on neurological symptoms and the risk of ESKD in primary and secondary thrombotic microangiopathies based on clinical presentation: a retrospective study [J].
Halimi, Jean-Michel ;
Thoreau, Benjamin ;
von Tokarski, Florent ;
Bauvois, Adeline ;
Gueguen, Juliette ;
Goin, Nicolas ;
Barbet, Christelle ;
Cloarec, Sylvie ;
Merieau, Elodie ;
Lachot, Sebastien ;
Garot, Denis ;
Lemaignen, Adrien ;
Gyan, Emmanuel ;
Perrotin, Franck ;
Pouplard, Claire ;
Maillot, Francois ;
Gatault, Philippe ;
Sautenet, Benedicte ;
Rusch, Emmanuel ;
Fremeaux-Bacchi, Veronique ;
Vigneau, Cecile ;
Bayer, Guillaume ;
Fakhouri, Fadi .
BMC NEPHROLOGY, 2022, 23 (01)
[13]   Retrospective and Systematic Analysis of Causes and Outcomes of Thrombotic Microangiopathies in Routine Clinical Practice: An 11-Year Study [J].
Henry, Nicolas ;
Mellaza, Chloe ;
Fage, Nicolas ;
Beloncle, Francois ;
Genevieve, Franck ;
Legendre, Guillaume ;
Orvain, Corentin ;
Garnier, Anne-Sophie ;
Cousin, Maud ;
Besson, Virginie ;
Subra, Jean-Francois ;
Duveau, Agnes ;
Augusto, Jean-Francois ;
Brilland, Benoit .
FRONTIERS IN MEDICINE, 2021, 8
[14]   KDOQI US Commentary on the 2012 KDIGO Clinical Practice Guideline for the Evaluation and Management of CKD [J].
Inker, Lesley A. ;
Astor, Brad C. ;
Fox, Chester H. ;
Isakova, Tamara ;
Lash, James P. ;
Peralta, Carmen A. ;
Tamura, Manjula Kurella ;
Feldman, Harold I. ;
Rocco, Michael V. ;
Berns, Jeffrey S. .
AMERICAN JOURNAL OF KIDNEY DISEASES, 2014, 63 (05) :713-735
[15]   Haemolytic uraemic syndrome [J].
Michael, Mini ;
Bagga, Arvind ;
Sartain, Sarah E. ;
Smith, Richard J. H. .
LANCET, 2022, 400 (10364) :1722-1740
[16]   Relative incidence of thrombotic thrombocytopenic purpura and haemolytic uraemic syndrome in clinically suspected cases of thrombotic microangiopathy [J].
Schoenermarck, Ulf ;
Ries, Wolfgang ;
Schroeppel, Bernd ;
Pape, Lars ;
Dunaj-Kazmierowska, Malgorzata ;
Burst, Volker ;
Mitzner, Steffen ;
Basara, Nadezda ;
Starck, Michael ;
Schmidbauer, Daniel ;
Mellmann, Alexander ;
Dittmer, Rita ;
Jeglitsch, Michael ;
Haas, Christian S. .
CLINICAL KIDNEY JOURNAL, 2020, 13 (02) :208-216
[17]   How I treat thrombotic thrombocytopenic purpura and atypical haemolytic uraemic syndrome [J].
Scully, Marie ;
Goodship, Tim .
BRITISH JOURNAL OF HAEMATOLOGY, 2014, 164 (06) :759-766
[18]   Diagnosis and treatment of thrombotic microangiopathy [J].
Thonnpson, Gemma L. ;
Kavanagh, David .
INTERNATIONAL JOURNAL OF LABORATORY HEMATOLOGY, 2022, 44 :101-113
[19]   Baseline characteristics and evolution of Brazilian patients with atypical hemolytic uremic syndrome: first report of the Brazilian aHUS Registry [J].
Vaisbich, Maria Helena ;
Modelli de Andrade, Luis Gustavo ;
Miranda de Menezes Neves, Precil Diego ;
Pereira Palma, Lilian Monteiro ;
Ribeiro de Castro, Maria Cristina ;
Braga Silva, Cassiano Augusto ;
Neves de Holanda Barbosa, Maria Izabel ;
Moreira Guimaraes Penido, Maria Goretti ;
Ferra Neto, Oreste Angelo ;
Lima Sobral, Roberta Mendes ;
Carvalho Miranda, Silvana Maria ;
Araujo, Stanley de Almeida ;
Pietrobom, Igor Gouveia ;
Takase, Henrique Mochida ;
Ribeiro, Claudia ;
da Silva, Rafael Marques ;
Almeida de Carvalho, Cesar Augusto ;
Barros Machado, David Jose ;
Simoes Teixeira E Silva, Ana Mateus ;
da Silva, Andreia Ribeiro ;
Russo, Enzo Ricardo ;
Soares Barros, Flavio Henrique ;
Landim Nasserala, Jarinne Camilo ;
Cardon de Oliveira, Luciana Schmitt ;
Sylvestre, Lucimary de Castro ;
Weissheimer, Rafael ;
Nascimento, Sueli Oliveira ;
Bianchini, Gilson ;
Barreto, Fellype de Carvalho ;
Pigozzi Veloso, Valeria Soares ;
Fortes, Patricia Marques ;
Colares, Vinicius Sardao ;
Gomes, Jaelson Guilhem ;
Pedrosa Leite, Andre Falcao ;
Mendonca Mesquita, Pablo Girardelli ;
Vieira-Neto, Osvaldo Merege .
CLINICAL KIDNEY JOURNAL, 2022, 15 (08) :1601-1611
[20]   The Impact of Artificial Intelligence in the Odyssey of Rare Diseases [J].
Visibelli, Anna ;
Roncaglia, Bianca ;
Spiga, Ottavia ;
Santucci, Annalisa .
BIOMEDICINES, 2023, 11 (03)