Machine Learning Pipeline for Predicting Bone Marrow Edema Along the Sacroiliac Joints on Magnetic Resonance Imaging

被引:13
作者
Roels, Joris [1 ,2 ]
De Craemer, Ann-Sophie [1 ,3 ]
Renson, Thomas [1 ,3 ]
de Hooge, Manouk [1 ,3 ]
Gevaert, Arne [1 ,2 ]
van den Berghe, Thomas [3 ]
Jans, Lennart [3 ]
Herregods, Nele [3 ]
Carron, Philippe [1 ,3 ]
van den Bosch, Filip [1 ,3 ]
Saeys, Yvan [1 ,2 ]
Elewaut, Dirk [1 ,3 ]
机构
[1] Univ Gent VIB UGent, Vlaams Inst Biotechnol, Ghent, Belgium
[2] Univ Ghent, Ghent, Belgium
[3] Ghent Univ Hosp, Ghent, Belgium
关键词
SPONDYLOARTHRITIS; DIAGNOSIS; LESIONS; ALGORITHM;
D O I
10.1002/art.42650
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objective. We aimed to develop and validate a fully automated machine learning (ML) algorithm that predicts bone marrow edema (BME) on a quadrant level in sacroiliac (SI) joint magnetic resonance imaging (MRI).Methods. A computer vision workflow automatically locates the SI joints, segments regions of interest (ilium and sacrum), performs objective quadrant extraction, and predicts presence of BME, suggestive of inflammatory lesions, on a quadrant level in semicoronal slices of T1/T2-weighted MRI scans. Ground truth was determined by consensus among human readers. The inflammation classifier was trained using a ResNet18 backbone and five-fold cross-validated on scans of patients with spondyloarthritis (SpA) (n = 279), postpartum individuals (n = 71), and healthy subjects (n = 114). Independent SpA patient MRI scans (n = 243) served as test data set. Patient-level predictions were derived from aggregating quadrant-level predictions, ie, at least one positive quadrant.Results. The algorithm automatically detects the SI joints with a precision of 98.4% and segments ilium/sacrum with an intersection over union of 85.6% and 67.9%, respectively. The inflammation classifier performed well in cross-validation: area under the curve (AUC) 94.5%, balanced accuracy (B-ACC) 80.5%, and F1 score 64.1%. In the test data set, AUC was 88.2%, B-ACC 72.1%, and F1 score 50.8%. On a patient level, the model achieved a B-ACC of 81.6% and 81.4% in the cross-validation and test data set, respectively.Conclusion. We propose a fully automated ML pipeline that enables objective and standardized evaluation of BME along the SI joints on MRI. This method has the potential to screen large numbers of patients with (suspected) SpA and is a step closer towards artificial intelligence-assisted diagnosis and follow-up.
引用
收藏
页码:2169 / 2177
页数:9
相关论文
共 33 条
[1]   ilastik: interactive machine learning for (bio) image analysis [J].
Berg, Stuart ;
Kutra, Dominik ;
Kroeger, Thorben ;
Straehle, Christoph N. ;
Kausler, Bernhard X. ;
Haubold, Carsten ;
Schiegg, Martin ;
Ales, Janez ;
Beier, Thorsten ;
Rudy, Markus ;
Eren, Kemal ;
Cervantes, Jaime I. ;
Xu, Buote ;
Beuttenmueller, Fynn ;
Wolny, Adrian ;
Zhang, Chong ;
Koethe, Ullrich ;
Hamprecht, Fred A. ;
Kreshuk, Anna .
NATURE METHODS, 2019, 16 (12) :1226-1232
[2]   Deep learning for detection of radiographic sacroiliitis: achieving expert-level performance [J].
Bressem, Keno K. ;
Vahldiek, Janis L. ;
Adams, Lisa ;
Niehues, Stefan Markus ;
Haibel, Hildrun ;
Rodriguez, Valeria Rios ;
Torgutalp, Murat ;
Protopopov, Mikhail ;
Proft, Fabian ;
Rademacher, Judith ;
Sieper, Joachim ;
Rudwaleit, Martin ;
Hamm, Bernd ;
Makowski, Marcus R. ;
Hermann, Kay-Geert ;
Poddubnyy, Denis .
ARTHRITIS RESEARCH & THERAPY, 2021, 23 (01)
[3]   Peripheral manifestations are major determinants of disease phenotype and outcome in new onset spondyloarthritis [J].
De Craemer, Ann-Sophie ;
Renson, Thomas ;
Deroo, Liselotte ;
Van Praet, Liesbet ;
Cypers, Heleen ;
Varkas, Gaelle ;
Joos, Rik ;
Devinck, Mieke ;
Gyselbrecht, Lieve ;
Peene, Isabelle ;
Thevissen, Kristof ;
Costantino, Felicie ;
D'Agostino, Maria-Antonietta ;
Lenaerts, Jan ;
Carron, Philippe ;
Van den Bosch, Filip ;
Elewaut, Dirk .
RHEUMATOLOGY, 2022, 61 (08) :3279-3288
[4]   Magnetic Resonance Imaging of the Sacroiliac Joints Indicating Sacroiliitis According to the Assessment of SpondyloArthritis international Society Definition in Healthy Individuals, Runners, and Women With Postpartum Back Pain [J].
de Winter, Janneke ;
de Hooge, Manouk ;
van de Sande, Marleen ;
de Jong, Henriette ;
van Hoeven, Lonneke ;
de Koning, Anoek ;
Berg, Inger Jorid ;
Ramonda, Roberta ;
Baeten, Dominique ;
van der Heijde, Desiree ;
Weel, Angelique ;
Landewe, Robert .
ARTHRITIS & RHEUMATOLOGY, 2018, 70 (07) :1042-1048
[5]   Machine learning techniques for computer-aided classification of active inflammatory sacroiliitis in magnetic resonance imaging [J].
Faleiros, Matheus Calil ;
Nogueira-Barbosa, Marcello Henrique ;
Dalto, Vitor Faeda ;
Ferreira Junior, Jose Raniery ;
Magalhaes Tenorio, Ariane Priscilla ;
Luppino-Assad, Rodrigo ;
Louzada-Junior, Paulo ;
Rangayyan, Rangaraj Mandayam ;
de Azevedo-Marques, Paulo Mazzoncini .
ADVANCES IN RHEUMATOLOGY, 2020, 60 (01)
[6]  
He K., 2015, CORR, Vabs/1502.01852, DOI [DOI 10.1109/CVPR.2016.90, 10.1109/CVPR.2016.90]
[7]  
Huang Gao, 2017, P IEEE C COMPUTER VI, P2261, DOI DOI 10.1109/CVPR.2017.243
[8]   HOW SENSITIVE AND SPECIFIC ARE MRI FEATURES OF SACROILIITIS FOR DIAGNOSIS OF SPONDYLOARTHRITIS IN PATIENTS WITH INFLAMMATORY BACK PAIN? [J].
Jans, L. ;
Coeman, L. ;
Van Praet, L. ;
Carron, P. ;
Elewaut, D. ;
Van den Bosch, F. ;
Jaremko, J. L. ;
Huysse, W. ;
Verstraete, K. L. .
JBR-BTR, 2014, 97 (04) :202-205
[9]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[10]   The semi-automated algorithm for the detection of bone marrow oedema lesions in patients with axial spondyloarthritis [J].
Kucybala, Iwona ;
Tabor, Zbislaw ;
Polak, Jakub ;
Urbanik, Andrzej ;
Wojciechowski, Wadim .
RHEUMATOLOGY INTERNATIONAL, 2020, 40 (04) :625-633