INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRODINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS

被引:4
作者
Krupchyk, Katya [1 ]
Uhlmann, Gunther [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Washington, Dept Math, Seattle, WA USA
关键词
inverse boundary problem; nonlinear Schrodinger equation; conformally transversally anisotropic manifold; Gaussian beams; BOUNDARY-VALUE-PROBLEMS; CALDERON PROBLEM; ELLIPTIC-EQUATIONS; GLOBAL UNIQUENESS; LENS RIGIDITY; CONDUCTIVITY;
D O I
10.2140/apde.2023.16.1825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse boundary problem for a nonlinear magnetic Schrodinger operator on a conformally transversally anisotropic Riemannian manifold of dimension n >= 3. Under suitable assumptions on the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the linear magnetic Schrodinger operator is still open in this generality.
引用
收藏
页码:1825 / 1868
页数:45
相关论文
共 58 条
[21]  
Guillarmou C, 2021, AM J MATH, V143, P533
[22]   LENS RIGIDITY FOR MANIFOLDS WITH HYPERBOLIC TRAPPED SETS [J].
Guillarmou, Colin .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 30 (02) :561-599
[23]   CALDERON INVERSE PROBLEM WITH PARTIAL DATA ON RIEMANN SURFACES [J].
Guillarmou, Colin ;
Tzou, Leo .
DUKE MATHEMATICAL JOURNAL, 2011, 158 (01) :83-120
[24]   An inverse boundary value problem for quasilinear elliptic equations [J].
Hervas, D ;
Sun, ZQ .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2002, 27 (11-12) :2449-2490
[25]  
HORMANDER L, 1976, ARCH RATION MECH AN, V62, P1, DOI 10.1007/BF00251855
[26]  
Ilmavirta J, 2020, Arxiv, DOI arXiv:2008.00073
[27]   GLOBAL UNIQUENESS FOR A 2-DIMENSIONAL SEMILINEAR ELLIPTIC INVERSE PROBLEM [J].
ISAKOV, V ;
NACHMAN, AI .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (09) :3375-3390
[28]   GLOBAL UNIQUENESS FOR A SEMILINEAR ELLIPTIC INVERSE PROBLEM [J].
ISAKOV, V ;
SYLVESTER, J .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1994, 47 (10) :1403-1410
[29]   Inverse spectral problems on hyperbolic manifolds and their applications to inverse boundary value problems in Euclidean space [J].
Isozaki, H .
AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (06) :1261-1313
[30]   Identification of nonlinearity in a conductivity equation via the Dirichlet-to-Neumann map [J].
Kang, H ;
Nakamura, G .
INVERSE PROBLEMS, 2002, 18 (04) :1079-1088