INVERSE PROBLEMS FOR NONLINEAR MAGNETIC SCHRODINGER EQUATIONS ON CONFORMALLY TRANSVERSALLY ANISOTROPIC MANIFOLDS

被引:4
作者
Krupchyk, Katya [1 ]
Uhlmann, Gunther [2 ]
机构
[1] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
[2] Univ Washington, Dept Math, Seattle, WA USA
来源
ANALYSIS & PDE | 2023年 / 16卷 / 08期
关键词
inverse boundary problem; nonlinear Schrodinger equation; conformally transversally anisotropic manifold; Gaussian beams; BOUNDARY-VALUE-PROBLEMS; CALDERON PROBLEM; ELLIPTIC-EQUATIONS; GLOBAL UNIQUENESS; LENS RIGIDITY; CONDUCTIVITY;
D O I
10.2140/apde.2023.16.1825
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the inverse boundary problem for a nonlinear magnetic Schrodinger operator on a conformally transversally anisotropic Riemannian manifold of dimension n >= 3. Under suitable assumptions on the nonlinearity, we show that the knowledge of the Dirichlet-to-Neumann map on the boundary of the manifold determines the nonlinear magnetic and electric potentials uniquely. No assumptions on the transversal manifold are made in this result, whereas the corresponding inverse boundary problem for the linear magnetic Schrodinger operator is still open in this generality.
引用
收藏
页码:1825 / 1868
页数:45
相关论文
共 58 条
  • [11] Projections for harmonic Bergman spaces and applications
    Choe, BR
    Koo, H
    Yi, H
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 216 (02) : 388 - 421
  • [12] doCarmo M.P., 1992, RIEMANNIAN GEOMETRY
  • [13] Eskin G., 2011, GRAD STUD MATH, V123, DOI DOI 10.1090/GSM/123
  • [14] Inverse problems for nonlinear hyperbolic equations with disjoint sources and receivers
    Feizmohammadi, Ali
    Lassas, Matti
    Oksanen, Lauri
    [J]. FORUM OF MATHEMATICS PI, 2021, 9
  • [15] An inverse problem for a semi-linear elliptic equation in Riemannian geometries
    Feizmohammadi, Ali
    Oksanen, Lauri
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (06) : 4683 - 4719
  • [16] The Linearized Calderon Problem in Transversally Anisotropic Geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Liimatainen, Tony
    Salo, Mikko
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2020, 2020 (22) : 8729 - 8765
  • [17] The Calderon problem in transversally anisotropic geometries
    Ferreira, David Dos Santos
    Kurylev, Yaroslav
    Lassas, Matti
    Salo, Mikko
    [J]. JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2016, 18 (11) : 2579 - 2626
  • [18] Limiting Carleman weights and anisotropic inverse problems
    Ferreira, David Dos Santos
    Kenig, Carlos E.
    Salo, Mikko
    Uhlmann, Gunther
    [J]. INVENTIONES MATHEMATICAE, 2009, 178 (01) : 119 - 171
  • [19] Reconstruction from boundary measurements for less regular conductivities
    Garcia, Andoni
    Zhang, Guo
    [J]. INVERSE PROBLEMS, 2016, 32 (11)
  • [20] Gilbarg D., 2015, ELLIPTIC PARTIAL DIF