Moanna: Multi-Omics Autoencoder-Based Neural Network Algorithm for Predicting Breast Cancer Subtypes

被引:13
作者
Lupat, Richard [1 ,2 ]
Perera, Rashindrie [1 ,3 ]
Loi, Sherene [1 ,2 ]
Li, Jason [1 ,2 ]
机构
[1] Peter MacCallum Canc Ctr, Div Canc Res, Melbourne, Vic 3000, Australia
[2] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Fac Engn & IT, Optimizat & Pattern Recognit Grp, Parkville, Vic 3010, Australia
关键词
Breast cancer; Gene expression; Cancer; Deep learning; Neural networks; Tumors; Feature extraction; Artificial neural networks; Genomics; Bioinformatics; cancer subtyping; artificial neural networks; machine learning; classification algorithms; cancer genomics; bioinformatics; genetic expression; deep learning; artificial intelligence; COMPREHENSIVE MOLECULAR PORTRAITS; GENE-EXPRESSION DATA;
D O I
10.1109/ACCESS.2023.3240515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cancer subtyping delivers valuable insights into the study of cancer heterogeneity and fulfills an essential step toward personalized medicine. For example, studies in breast cancer have shown that cancer subtypes based on molecular differences are associated with different patient survival and treatment responses. However, recent studies have suggested inconsistent breast cancer subtype classifications using alternative approaches, suggesting that current methods are yet to be optimized. Existing computation-based methods have also been limited by their dependency on incomplete prior knowledge and ineffectiveness in handling high-dimensional data beyond gene expression. Here, we propose a novel deep-learning-based algorithm, Moanna, that is trained to integrate multi-omics data for predicting breast cancer subtypes. Moanna's architecture consists of a semi-supervised Autoencoder attached to a multi-task learning network for generalizing the combination of gene expression, copy number and somatic mutation data. We trained Moanna on a subset of the METABRIC breast cancer dataset and evaluated the performance on the remaining hold-out METABRIC samples and a fully independent cohort of TCGA samples. We evaluated our use of Autoencoder against other dimensionality reduction techniques and demonstrated its superiority in learning patterns associated with breast cancer subtypes. The overall Moanna model also achieved high accuracy in predicting samples' ER status (96%), differentiating basal-like samples (98%), and classifying samples into PAM50 subtypes (85%). Moreover, Moanna's predicted subtypes show a stronger correlation with patient survival when compared to the original PAM50 subtypes.
引用
收藏
页码:10912 / 10924
页数:13
相关论文
共 52 条
[21]  
Goodfellow I, 2016, ADAPT COMPUT MACH LE, P321
[22]   Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors [J].
Herschkowitz, Jason I. ;
Simin, Karl ;
Weigman, Victor J. ;
Mikaelian, Igor ;
Usary, Jerry ;
Hu, Zhiyuan ;
Rasmussen, Karen E. ;
Jones, Laundette P. ;
Assefnia, Shahin ;
Chandrasekharan, Subhashini ;
Backlund, Michael G. ;
Yin, Yuzhi ;
Khramtsov, Andrey I. ;
Bastein, Roy ;
Quackenbush, John ;
Glazer, Robert I. ;
Brown, Powel H. ;
Green, Jeffrey E. ;
Kopelovich, Levy ;
Furth, Priscilla A. ;
Palazzo, Juan P. ;
Olopade, Olufunmilayo I. ;
Bernard, Philip S. ;
Churchill, Gary A. ;
Van Dyke, Terry ;
Perou, Charles M. .
GENOME BIOLOGY, 2007, 8 (05)
[23]  
Hira Zena M., 2015, Advances in Bioinformatics, V2015, P198363, DOI [10.1155/2015/198363, 10.1155/2015/198363]
[24]   DeepSurv: personalized treatment recommender system using a Cox proportional hazards deep neural network [J].
Katzman, Jared L. ;
Shaham, Uri ;
Cloninger, Alexander ;
Bates, Jonathan ;
Jiang, Tingting ;
Kluger, Yuval .
BMC MEDICAL RESEARCH METHODOLOGY, 2018, 18
[25]   Discordance of the PAM50 Intrinsic Subtypes Compared with Immunohistochemistry-Based Surrogate in Breast Cancer Patients: Potential Implication of Genomic Alterations of Discordance [J].
Kim, Hee Kyung ;
Park, Kyung Hee ;
Kim, Youjin ;
Park, Song Ee ;
Lee, Han Sang ;
Lim, Sung Won ;
Cho, Jang Ho ;
Kim, Ji-Yeon ;
Lee, Jeong Eon ;
Ahn, Jin Seok ;
Im, Young-Hyuck ;
Yu, Jong Han ;
Park, Yeon Hee .
CANCER RESEARCH AND TREATMENT, 2019, 51 (02) :737-747
[26]   Comprehensive molecular portraits of human breast tumours [J].
Koboldt, Daniel C. ;
Fulton, Robert S. ;
McLellan, Michael D. ;
Schmidt, Heather ;
Kalicki-Veizer, Joelle ;
McMichael, Joshua F. ;
Fulton, Lucinda L. ;
Dooling, David J. ;
Ding, Li ;
Mardis, Elaine R. ;
Wilson, Richard K. ;
Ally, Adrian ;
Balasundaram, Miruna ;
Butterfield, Yaron S. N. ;
Carlsen, Rebecca ;
Carter, Candace ;
Chu, Andy ;
Chuah, Eric ;
Chun, Hye-Jung E. ;
Coope, Robin J. N. ;
Dhalla, Noreen ;
Guin, Ranabir ;
Hirst, Carrie ;
Hirst, Martin ;
Holt, Robert A. ;
Lee, Darlene ;
Li, Haiyan I. ;
Mayo, Michael ;
Moore, Richard A. ;
Mungall, Andrew J. ;
Pleasance, Erin ;
Robertson, A. Gordon ;
Schein, Jacqueline E. ;
Shafiei, Arash ;
Sipahimalani, Payal ;
Slobodan, Jared R. ;
Stoll, Dominik ;
Tam, Angela ;
Thiessen, Nina ;
Varhol, Richard J. ;
Wye, Natasja ;
Zeng, Thomas ;
Zhao, Yongjun ;
Birol, Inanc ;
Jones, Steven J. M. ;
Marra, Marco A. ;
Cherniack, Andrew D. ;
Saksena, Gordon ;
Onofrio, Robert C. ;
Pho, Nam H. .
NATURE, 2012, 490 (7418) :61-70
[27]   Systemic RAGE ligands are upregulated in tuberculosis individuals with diabetes comorbidity and modulated by anti-tuberculosis treatment and metformin therapy [J].
Kumar, Nathella Pavan ;
Moideen, Kadar ;
Nancy, Arul ;
Viswanathan, Vijay ;
Shruthi, Basavaradhya S. ;
Sivakumar, Shanmugam ;
Hissar, Syed ;
Kornfeld, Hardy ;
Babu, Subash .
BMC INFECTIOUS DISEASES, 2019, 19 (01)
[28]   Feature Selection: A Data Perspective [J].
Li, Jundong ;
Cheng, Kewei ;
Wang, Suhang ;
Morstatter, Fred ;
Trevino, Robert P. ;
Tang, Jiliang ;
Liu, Huan .
ACM COMPUTING SURVEYS, 2018, 50 (06)
[29]   Histological, molecular and functional subtypes of breast cancers [J].
Malhotra, Gautam K. ;
Zhao, Xiangshan ;
Band, Hamid ;
Band, Vimla .
CANCER BIOLOGY & THERAPY, 2010, 10 (10) :955-960
[30]   Breast cancer intra-tumor heterogeneity [J].
Martelotto, Luciano G. ;
Ng, Charlotte K. Y. ;
Piscuoglio, Salvatore ;
Weigelt, Britta ;
Reis-Filho, Jorge S. .
BREAST CANCER RESEARCH, 2014, 16 (03)