Moanna: Multi-Omics Autoencoder-Based Neural Network Algorithm for Predicting Breast Cancer Subtypes

被引:12
作者
Lupat, Richard [1 ,2 ]
Perera, Rashindrie [1 ,3 ]
Loi, Sherene [1 ,2 ]
Li, Jason [1 ,2 ]
机构
[1] Peter MacCallum Canc Ctr, Div Canc Res, Melbourne, Vic 3000, Australia
[2] Univ Melbourne, Sir Peter MacCallum Dept Oncol, Parkville, Vic 3010, Australia
[3] Univ Melbourne, Fac Engn & IT, Optimizat & Pattern Recognit Grp, Parkville, Vic 3010, Australia
关键词
Breast cancer; Gene expression; Cancer; Deep learning; Neural networks; Tumors; Feature extraction; Artificial neural networks; Genomics; Bioinformatics; cancer subtyping; artificial neural networks; machine learning; classification algorithms; cancer genomics; bioinformatics; genetic expression; deep learning; artificial intelligence; COMPREHENSIVE MOLECULAR PORTRAITS; GENE-EXPRESSION DATA;
D O I
10.1109/ACCESS.2023.3240515
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Cancer subtyping delivers valuable insights into the study of cancer heterogeneity and fulfills an essential step toward personalized medicine. For example, studies in breast cancer have shown that cancer subtypes based on molecular differences are associated with different patient survival and treatment responses. However, recent studies have suggested inconsistent breast cancer subtype classifications using alternative approaches, suggesting that current methods are yet to be optimized. Existing computation-based methods have also been limited by their dependency on incomplete prior knowledge and ineffectiveness in handling high-dimensional data beyond gene expression. Here, we propose a novel deep-learning-based algorithm, Moanna, that is trained to integrate multi-omics data for predicting breast cancer subtypes. Moanna's architecture consists of a semi-supervised Autoencoder attached to a multi-task learning network for generalizing the combination of gene expression, copy number and somatic mutation data. We trained Moanna on a subset of the METABRIC breast cancer dataset and evaluated the performance on the remaining hold-out METABRIC samples and a fully independent cohort of TCGA samples. We evaluated our use of Autoencoder against other dimensionality reduction techniques and demonstrated its superiority in learning patterns associated with breast cancer subtypes. The overall Moanna model also achieved high accuracy in predicting samples' ER status (96%), differentiating basal-like samples (98%), and classifying samples into PAM50 subtypes (85%). Moreover, Moanna's predicted subtypes show a stronger correlation with patient survival when compared to the original PAM50 subtypes.
引用
收藏
页码:10912 / 10924
页数:13
相关论文
共 52 条
[1]  
Alberts B, 2015, MOLECULAR BIOLOGY OF THE CELL, SIXTH EDITION, P1035
[2]   Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification [J].
Allott, Emma H. ;
Geradts, Joseph ;
Sun, Xuezheng ;
Cohen, Stephanie M. ;
Zirpoli, Gary R. ;
Khoury, Thaer ;
Bshara, Wiam ;
Chen, Mengjie ;
Sherman, Mark E. ;
Palmer, Julie R. ;
Ambrosone, Christine B. ;
Olshan, Andrew F. ;
Troester, Melissa A. .
BREAST CANCER RESEARCH, 2016, 18
[3]   A Survey on Hybrid Feature Selection Methods in Microarray Gene Expression Data for Cancer Classification [J].
Almugren, Nada ;
Alshamlan, Hala .
IEEE ACCESS, 2019, 7 :78533-78548
[4]  
[Anonymous], 2015, Advances in independent component analysis and learning machines
[5]   Automated Gleason grading of prostate cancer tissue microarrays via deep learning [J].
Arvaniti, Eirini ;
Fricker, Kim S. ;
Moret, Michael ;
Rupp, Niels ;
Hermanns, Thomas ;
Fankhauser, Christian ;
Wey, Norbert ;
Wild, Peter J. ;
Ruschoff, Jan H. ;
Claassen, Manfred .
SCIENTIFIC REPORTS, 2018, 8
[6]   PAM50 Breast Cancer Subtyping by RT-qPCR and Concordance with Standard Clinical Molecular Markers [J].
Bastien, Roy R. L. ;
Rodriguez-Lescure, Alvaro ;
Ebbert, Mark T. W. ;
Prat, Aleix ;
Munarriz, Blanca ;
Rowe, Leslie ;
Miller, Patricia ;
Ruiz-Borrego, Manuel ;
Anderson, Daniel ;
Lyons, Bradley ;
Alvarez, Isabel ;
Dowell, Tracy ;
Wall, David ;
Angel Segui, Miguel ;
Barley, Lee ;
Boucher, Kenneth M. ;
Alba, Emilio ;
Pappas, Lisa ;
Davis, Carole A. ;
Aranda, Ignacio ;
Fauron, Christiane ;
Stijleman, Inge J. ;
Palacios, Jose ;
Anton, Antonio ;
Carrasco, Eva ;
Caballero, Rosalia ;
Ellis, Matthew J. ;
Nielsen, Torsten O. ;
Perou, Charles M. ;
Astill, Mark ;
Bernard, Philip S. ;
Martin, Miguel .
BMC MEDICAL GENOMICS, 2012, 5
[7]   Diagnostic Assessment of Deep Learning Algorithms for Detection of Lymph Node Metastases in Women With Breast Cancer [J].
Bejnordi, Babak Ehteshami ;
Veta, Mitko ;
van Diest, Paul Johannes ;
van Ginneken, Bram ;
Karssemeijer, Nico ;
Litjens, Geert ;
van der Laak, Jeroen A. W. M. .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2017, 318 (22) :2199-2210
[8]   DeepTRIAGE: interpretable and individualised biomarker scores using attention mechanism for the classification of breast cancer sub-types [J].
Beykikhoshk, Adham ;
Quinn, Thomas P. ;
Lee, Samuel C. ;
Truyen Tran ;
Venkatesh, Svetha .
BMC MEDICAL GENOMICS, 2020, 13 (Suppl 3)
[9]   A systematic study of the class imbalance problem in convolutional neural networks [J].
Buda, Mateusz ;
Maki, Atsuto ;
Mazurowski, Maciej A. .
NEURAL NETWORKS, 2018, 106 :249-259
[10]   The cBio Cancer Genomics Portal: An Open Platform for Exploring Multidimensional Cancer Genomics Data [J].
Cerami, Ethan ;
Gao, Jianjiong ;
Dogrusoz, Ugur ;
Gross, Benjamin E. ;
Sumer, Selcuk Onur ;
Aksoy, Buelent Arman ;
Jacobsen, Anders ;
Byrne, Caitlin J. ;
Heuer, Michael L. ;
Larsson, Erik ;
Antipin, Yevgeniy ;
Reva, Boris ;
Goldberg, Arthur P. ;
Sander, Chris ;
Schultz, Nikolaus .
CANCER DISCOVERY, 2012, 2 (05) :401-404