Holder stability estimates in determining the time-dependent coefficients of the heat equation from the Cauchy data set

被引:0
作者
Rassas, Imen [1 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, Lab Modelisat Math & Numer Sci Ingenieur LAMSIN, Tunis 1002, Tunisia
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2024年 / 32卷 / 02期
关键词
Inverse problem; parabolic equation; time-dependent coefficients; stability estimates; Cauchy data; INVERSE PROBLEM; PARABOLIC EQUATION; DIRICHLET; IDENTIFICATION;
D O I
10.1515/jiip-2021-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address stability results in determining the time-dependent scalar and vector potentials appearing in the convection-diffusion equation from the knowledge of the Cauchy data set. We prove Holder-type stability estimates. The key tool used in this work is the geometric optics solution.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 32 条
[21]   Inverse problems for the Schrodinger equations with time-dependent electromagnetic potentials and the Aharonov-Bohm effect [J].
Eskin, G. .
JOURNAL OF MATHEMATICAL PHYSICS, 2008, 49 (02)
[22]  
Isakov V, 2017, APPL MATH SCI, V127, P1, DOI 10.1007/978-3-319-51658-5
[23]   COMPLETENESS OF PRODUCTS OF SOLUTIONS AND SOME INVERSE PROBLEMS FOR PDE [J].
ISAKOV, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 92 (02) :305-316
[24]  
Katchalov A., 2001, Monographs and Surveys in Pure and Applied Mathematics, V123
[25]   HOLDER STABLY DETERMINING THE TIME-DEPENDENT ELECTROMAGNETIC POTENTIAL OF THE SCHRODINGER EQUATION [J].
Kian, Yavar ;
Soccorsi, Eric .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (02) :627-647
[26]   Unique determination of a time-dependent potential for wave equations from partial data [J].
Kian, Yavar .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2017, 34 (04) :973-990
[27]   Stability in the determination of a time-dependent coefficient for wave equations from partial data [J].
Kian, Yavar .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (01) :408-428
[28]   Inverse problems for advection diffusion equations in admissible geometries [J].
Krupchyk, Katya ;
Uhlmann, Gunther .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2018, 43 (04) :585-615
[30]   A PARTIAL DATA INVERSE PROBLEM FOR THE CONVECTION-DIFFUSION EQUATION [J].
Sahoo, Suman Kumar ;
Vashisth, Manmohan .
INVERSE PROBLEMS AND IMAGING, 2020, 14 (01) :53-75