Holder stability estimates in determining the time-dependent coefficients of the heat equation from the Cauchy data set

被引:0
作者
Rassas, Imen [1 ]
机构
[1] Univ Tunis El Manar, Natl Engn Sch Tunis, Lab Modelisat Math & Numer Sci Ingenieur LAMSIN, Tunis 1002, Tunisia
来源
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS | 2024年 / 32卷 / 02期
关键词
Inverse problem; parabolic equation; time-dependent coefficients; stability estimates; Cauchy data; INVERSE PROBLEM; PARABOLIC EQUATION; DIRICHLET; IDENTIFICATION;
D O I
10.1515/jiip-2021-0013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we address stability results in determining the time-dependent scalar and vector potentials appearing in the convection-diffusion equation from the knowledge of the Cauchy data set. We prove Holder-type stability estimates. The key tool used in this work is the geometric optics solution.
引用
收藏
页码:183 / 198
页数:16
相关论文
共 32 条
[1]   IDENTIFICATION OF Q(CHI) IN MU(T)=DELTA-MU-Q-MU FROM BOUNDARY OBSERVATIONS [J].
AVDONIN, S ;
SEIDMAN, TI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (04) :1247-1255
[2]  
Avdonin S. A., 2005, AM MATH SOC TRANSL S, V214, P1
[3]   Uniqueness and stability in an inverse problem for the Schrodinger equation (vol 18, pg 1537, 2002) [J].
Baudouin, L. ;
Puel, J-P .
INVERSE PROBLEMS, 2007, 23 (03) :1327-1328
[4]   Recent progress in the boundary control method [J].
Belishev, M. I. .
INVERSE PROBLEMS, 2007, 23 (05) :R1-R67
[5]  
Bellassoued M., 2006, Applicable Analysis, V85, P1219, DOI 10.1080/00036810600787873
[6]   Stability estimate for an inverse problem of the convection-diffusion equation [J].
Bellassoued, Mourad ;
Rassas, Imen .
JOURNAL OF INVERSE AND ILL-POSED PROBLEMS, 2020, 28 (01) :71-92
[7]   Stability estimate in the determination of a time-dependent coefficient for hyperbolic equation by partial Dirichlet-to-Neumann map [J].
Bellassoued, Mourad ;
Rassas, Imen .
APPLICABLE ANALYSIS, 2019, 98 (15) :2751-2782
[8]  
BUKHGEIM AL, 1985, DOKL AKAD NAUK SSSR+, V284, P21
[9]  
Cannon J. R., 1986, INT SCHRIFTENREIHE N, V77, P133
[10]   AN INVERSE PROBLEM FOR THE HEAT-EQUATION [J].
CANNON, JR ;
ESTEVA, SP .
INVERSE PROBLEMS, 1986, 2 (04) :395-403