Formation of Monolayer Charge Density Waves and Anomalous Edge Doping in Na Doped Bulk VSe2

被引:3
作者
Chazarin, Ulysse [1 ,2 ]
Lezoualc'h, Mahe [3 ]
Chou, Jyh-Ping [4 ]
Pai, Woei Wu [2 ]
Karn, Abhishek [2 ]
Sankar, Raman [5 ]
Chacon, Cyril C. C. [1 ]
Girard, Yann [1 ]
Repain, Vincent [1 ]
Bellec, Amandine [1 ]
Rousset, Sylvie [1 ]
Smogunov, Alexander [3 ]
Dappe, Yannick J. J. [3 ]
Lagoute, Jerome [1 ]
机构
[1] Univ Paris Cite, Lab Mat & Phenomenes Quant, CNRS, 10 Rue Alice Domon & Leonie Duquet, F-75205 Paris 13, France
[2] Natl Taiwan Univ, Ctr Condensed Matter Sci CCMS, Taipei 11106, Taiwan
[3] Univ Paris Saclay, CNRS, SPEC, CEA,CEA Saclay, F-91191 Gif Sur Yvette, France
[4] Natl Changhua Univ Educ, Dept Phys, Chuanghua City 50007, Taiwan
[5] Acad Sinica, Inst Phys, Taipei 11529, Taiwan
来源
ADVANCED MATERIALS INTERFACES | 2023年 / 10卷 / 03期
关键词
electrostatic effect; scanning tunneling microscope; transition metal dichalcogenides; VSe2; MOLECULAR-DYNAMICS; NANOSHEETS;
D O I
10.1002/admi.202201680
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Alkali atom doping is an efficient way to induce charge transfer and Fermi level tuning in layered materials through intercalation. However, there is a general lack of microscopic understanding of the effect of doping inhomogeneity in geometric and electronic aspects. Here, we report surface doping of a bulk VSe2 crystal by sodium. Na atoms form intercalated subsurface islands that modify the electronic phase of the top layer of VSe2. In addition to n-doping, the charge density wave of the intercalated VSe2 surface layer changes from the (4 x 4) bulk phase to the (3x7$\sqrt 3 {\bm{ \times }}\sqrt 7 $) known in monolayer phase of VSe2. Surprisingly, an electronic state at the edges of Na-intercalated area shift anomalously upward in energy as detected by scanning tunneling spectroscopy. This is explained by a local gating effect resulting from local dipoles at the edges. The study illustrates a clear example of intercalation effect that should be general in alkali-intercalated bulk layered materials.
引用
收藏
页数:7
相关论文
共 34 条
  • [21] Dimensional crossover of the charge density wave transition in thin exfoliated VSe2
    Pasztor, Arpad
    Scarfato, Alessandro
    Barreteau, Celine
    Giannini, Enrico
    Renner, Christoph
    [J]. 2D MATERIALS, 2017, 4 (04):
  • [22] Perdew JP, 1997, PHYS REV LETT, V78, P1396, DOI 10.1103/PhysRevLett.77.3865
  • [23] On the origin of charge-density waves in select layered transition-metal dichalcogenides
    Rossnagel, K.
    [J]. JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (21)
  • [24] Application of highly stretchable and conductive two-dimensional 1T VS2 and VSe2 as anode materials for Li-, Na- and Ca-ion storage
    Salavati, Mohammad
    Rabczuluk, Timon
    [J]. COMPUTATIONAL MATERIALS SCIENCE, 2019, 160 : 360 - 367
  • [25] ABINITIO MULTICENTER TIGHT-BINDING MODEL FOR MOLECULAR-DYNAMICS SIMULATIONS AND OTHER APPLICATIONS IN COVALENT SYSTEMS
    SANKEY, OF
    NIKLEWSKI, DJ
    [J]. PHYSICAL REVIEW B, 1989, 40 (06): : 3979 - 3995
  • [26] Origin of the multiple charge density wave order in 1T-VSe2
    Si, J. G.
    Lu, W. J.
    Wu, H. Y.
    Lv, H. Y.
    Liang, X.
    Li, Q. J.
    Sun, Y. P.
    [J]. PHYSICAL REVIEW B, 2020, 101 (23)
  • [27] Charge-density wave transition of 1T-VSe2 studied by angle-resolved photoemission spectroscopy -: art. no. 155108
    Terashima, K
    Sato, T
    Komatsu, H
    Takahashi, T
    Maeda, N
    Hayashi, K
    [J]. PHYSICAL REVIEW B, 2003, 68 (15):
  • [28] Thouin F, 2019, NAT MATER, V18, P349, DOI [10.1038/s41563-018-0262-7, 10.1016/0022-3093(95)00355-X]
  • [29] Fast electronic resistance switching involving hidden charge density wave states
    Vaskivskyi, I.
    Mihailovic, I. A.
    Brazovskii, S.
    Gospodaric, J.
    Mertelj, T.
    Svetin, D.
    Sutar, P.
    Mihailovic, D.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [30] Controllable phase transitions between multiple charge density waves in monolayer 1T-VSe2 via charge doping
    Wang, Zishen
    Zhou, Jun
    Loh, Kian Ping
    Feng, Yuan Ping
    [J]. APPLIED PHYSICS LETTERS, 2021, 119 (16)