Exploiting Label Uncertainty for Enhanced 3D Object Detection From Point Clouds

被引:4
作者
Sun, Yang [1 ]
Lu, Bin [1 ]
Liu, Yonghuai [2 ]
Yang, Zhenyu [1 ]
Behera, Ardhendu [2 ]
Song, Ran [3 ]
Yuan, Hejin [1 ]
Jiang, Haiyan [4 ]
机构
[1] North China Elect Power Univ, Engn Res Ctr Intelligent Comp Complex Energy Syst, Minist Educ, Baoding 071003, Peoples R China
[2] Edge Hill Univ, Intelligent Visual Comp Res Ctr, Ormskirk L39 4QP, Lancs, England
[3] Shandong Univ, Sch Control Sci & Engn, Jinan 250100, Peoples R China
[4] Nanjing Agr Univ, Coll Artificial Intelligence, Nanjing 210095, Peoples R China
基金
英国工程与自然科学研究理事会; 英国科研创新办公室;
关键词
3D object detection; deep learning; point clouds; soft regression loss; dynamic sample selection;
D O I
10.1109/TITS.2023.3334873
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Accurate detection of objects from LiDAR point clouds is crucial for autonomous driving and environment modeling. However, uncertainties in ground truth labels due to occlusions, sparsity, and truncation can hinder model training and performance. This paper introduces two strategies to address these issues: 1) Soft Regression Loss (SoRL) and 2) Discrete Quantization Sampling (DQS). SoRL utilizes Gaussian distributions for object predictions, measuring uncertainty based on the probability of ground truth labels within these distributions. This method effectively accounts for deviations in object location and orientation. Meanwhile, DQS introduces uncertainty scores for dynamic sample selection, aiming to refine the quality of positive samples for regression. Based on the proposed modules, we design a lightweight multi-stage object detection framework. Notably, these modules can enhance existing 3D object detection methods without affecting significantly inference speeds. Experiments over benchmark datasets show the effectiveness of our method, especially for cars in sparse point clouds.
引用
收藏
页码:6074 / 6089
页数:16
相关论文
共 52 条
[1]   nuScenes: A multimodal dataset for autonomous driving [J].
Caesar, Holger ;
Bankiti, Varun ;
Lang, Alex H. ;
Vora, Sourabh ;
Liong, Venice Erin ;
Xu, Qiang ;
Krishnan, Anush ;
Pan, Yu ;
Baldan, Giancarlo ;
Beijbom, Oscar .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :11618-11628
[2]   3D Cascade RCNN: High Quality Object Detection in Point Clouds [J].
Cai, Qi ;
Pan, Yingwei ;
Yao, Ting ;
Mei, Tao .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 :5706-5719
[3]  
Chen C, 2022, AAAI CONF ARTIF INTE, P221
[4]  
Chen YL, 2019, IEEE I CONF COMP VIS, P9774, DOI [10.1109/iccv.2019.00987, 10.1109/ICCV.2019.00987]
[5]   Focal Sparse Convolutional Networks for 3D Object Detection [J].
Chen, Yukang ;
Li, Yanwei ;
Zhang, Xiangyu ;
Sun, Jian ;
Jia, Jiaya .
2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, :5418-5427
[6]   Gaussian YOLOv3: An Accurate and Fast Object Detector Using Localization Uncertainty for Autonomous Driving [J].
Choi, Jiwoong ;
Chun, Dayoung ;
Kim, Hyun ;
Lee, Hyuk-Jae .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :502-511
[7]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[8]  
Deng JJ, 2021, AAAI CONF ARTIF INTE, V35, P1201
[9]   Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection [J].
Du, Liang ;
Ye, Xiaoqing ;
Tan, Xiao ;
Feng, Jianfeng ;
Xu, Zhenbo ;
Ding, Errui ;
Wen, Shilei .
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020), 2020, :13326-13335
[10]  
Geiger A, 2012, PROC CVPR IEEE, P3354, DOI 10.1109/CVPR.2012.6248074