A robust semi-automatic delineation workflow using denoised diffusion weighted magnetic resonance imaging for response assessment of patients with esophageal cancer treated with neoadjuvant chemoradiotherapy

被引:1
作者
den Boer, Robin [1 ]
Siang, Kelvin Ng Wei [2 ,3 ]
Yuen, Mandy [1 ]
Borggreve, Alicia [1 ]
Defize, Ingmar [1 ]
van Lier, Astrid [1 ]
Ruurda, Jelle [4 ]
van Hillegersberg, Richard [4 ]
Mook, Stella [1 ]
Meijer, Gert [1 ,5 ]
机构
[1] Univ Med Ctr Utrecht, Dept Radiat Oncol, Utrecht, Netherlands
[2] Univ Med Ctr Rotterdam, Erasmus MC Canc Inst, Dept Radiotherapy, Rotterdam, Netherlands
[3] Holland Proton Therapy Ctr, Dept Med Phys & Informat, Delft, Netherlands
[4] Univ Med Ctr Utrecht, Dept Surg, Utrecht, Netherlands
[5] Heidelberglaan 100, NL-3584 CX Utrecht, Netherlands
来源
PHYSICS & IMAGING IN RADIATION ONCOLOGY | 2023年 / 28卷
关键词
diffusion weighted MRI; Esophageal cancer; Response prediction; Neoadjuvant chemoradiotherapy; Automatic workflow; Imaging biomarker; PATHOLOGICAL COMPLETE RESPONSE; MRI; SEGMENTATION; PREDICTION;
D O I
10.1016/j.phro.2023.100489
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background and Purpose: Diffusion weighted magnetic resonance imaging (DW-MRI) can be prognostic for response to neoadjuvant chemotherapy (nCRT) in patients with esophageal cancer. However, manual tumor delineation is labor intensive and subjective. Furthermore, noise in DW-MRI images will propagate into the corresponding apparent diffusion coefficient (ADC) signal. In this study a workflow is investigated that combines a denoising algorithm with semi-automatic segmentation for quantifying ADC changes.Materials and Methods: Twenty patients with esophageal cancer who underwent nCRT before esophagectomy were included. One baseline and five weekly DW-MRI scans were acquired for every patient during nCRT. A self-supervised learning denoising algorithm, Patch2Self, was used to denoise the DWI-MRI images. A semi-automatic delineation workflow (SADW) was next developed and compared with a manually adjusted workflow (MAW). The agreement between workflows was determined using the Dice coefficients and Brand Altman plots. The prognostic value of ADCmean increases (%/week) for pathologic complete response (pCR) was assessed using c-statistics.Results: The median Dice coefficient between the SADW and MAW was 0.64 (interquartile range 0.20). For the MAW, the c-statistic for predicting pCR was 0.80 (95% confidence interval (CI):0.56-1.00). The SADW showed a c-statistic of 0.84 (95%CI:0.63-1.00) after denoising. No statistically significant differences in c-statistics were observed between the workflows or after applying denoising. Conclusions: The SADW resulted in non-inferior prognostic value for pCR compared to the more laborious MAW, allowing broad scale applications. The effect of denoising on the prognostic value for pCR needs to be investigated in larger cohorts.
引用
收藏
页数:8
相关论文
共 24 条
[1]   Robust extraction of biological information from diffusion-weighted magnetic resonance imaging during radiotherapy using semi-automatic delineation [J].
Bisgaard, Anne Louise Hojmark ;
Brink, Carsten ;
Fransen, Maja Lynge ;
Schytte, Tine ;
Behrens, Claus P. ;
Vogelius, Ivan ;
Nissen, Henrik Dahl ;
Mahmood, Faisal .
PHYSICS & IMAGING IN RADIATION ONCOLOGY, 2022, 21 :146-152
[2]   Preoperative image-guided identification of response to neoadjuvant chemoradiotherapy in esophageal cancer (PRIDE): a multicenter observational study [J].
Borggreve, A. S. ;
Mook, S. ;
Verheij, M. ;
Mul, V. E. M. ;
Bergman, J. J. ;
Bartels-Rutten, A. ;
ter Beek, L. C. ;
Beets-Tan, R. G. H. ;
Bennink, R. J. ;
Henegouwen, M. I. van Berge ;
Brosens, L. A. A. ;
Defize, I. L. ;
van Dieren, J. M. ;
Dijkstra, H. ;
van Hillegersberg, R. ;
Hulshof, M. C. ;
van Laarhoven, H. W. M. ;
Lam, M. G. E. H. ;
van Lier, A. L. H. M. W. ;
Muijs, C. T. ;
Nagengast, W. B. ;
Nederveen, A. J. ;
Noordzij, W. ;
Plukker, J. T. M. ;
van Rossum, P. S. N. ;
Ruurda, J. P. ;
van Sandick, J. W. ;
Weusten, B. L. A. M. ;
Voncken, F. E. M. ;
Yakar, D. ;
Meijer, G. J. .
BMC CANCER, 2018, 18
[3]   Optimal timing for prediction of pathologic complete response to neoadjuvant chemoradiotherapy with diffusion-weighted MRI in patients with esophageal cancer [J].
Borggreve, Alicia S. ;
Heethuis, Sophie E. ;
Boekhoff, Mick R. ;
Goense, Lucas ;
van Rossum, Peter S. N. ;
Brosens, Lodewijk A. A. ;
van Lier, Astrid L. H. M. W. ;
van Hillegersberg, Richard ;
Lagendijk, Jan J. W. ;
Mook, Stella ;
Ruurda, Jelle P. ;
Meijer, Gert J. .
EUROPEAN RADIOLOGY, 2020, 30 (04) :1896-1907
[4]   Denoising diffusion weighted imaging data using convolutional neural networks [J].
Cheng, Hu ;
Vinci-Booher, Sophia ;
Wang, Jian ;
Caron, Bradley ;
Wen, Qiuting ;
Newman, Sharlene ;
Pestilli, Franco .
PLOS ONE, 2022, 17 (09)
[5]   Detecting Pathological Complete Response in Esophageal Cancer after Neoadjuvant Therapy Based on Imaging Techniques: A Diagnostic Systematic Review and Meta-Analysis [J].
de Gouw, Didi J. J. M. ;
Klarenbeek, Bastiaan R. ;
Driessen, Mitchell ;
Bouwense, Stefan A. W. ;
van Workum, Frans ;
Futterer, Jurgen J. ;
Rovers, Maroeska M. ;
ten Broek, Richard P. G. ;
Rosman, Camiel .
JOURNAL OF THORACIC ONCOLOGY, 2019, 14 (07) :1156-1171
[6]   Complete Pathologic Response After Neoadjuvant Chemoradiotherapy for Esophageal Cancer Is Associated With Enhanced Survival [J].
Donahue, James M. ;
Nichols, Francis C. ;
Li, Zhuo ;
Schomas, David A. ;
Allen, Mark S. ;
Cassivi, Stephen D. ;
Jatoi, Aminah ;
Miller, Robert C. ;
Wigle, Dennis A. ;
Shen, K. Robert ;
Deschamps, Claude .
ANNALS OF THORACIC SURGERY, 2009, 87 (02) :392-399
[7]  
Fadnavis S, 2020, Arxiv, DOI [arXiv:2011.01355, 10.48550/arXiv.2011.01355, DOI 10.48550/ARXIV.2011.01355]
[8]   Multimodal Imaging of Pathologic Response to Chemoradiation in Esophageal Cancer [J].
Fang, Penny ;
Musall, Benjamin C. ;
Son, Jong Bum ;
Moreno, Amy C. ;
Hobbs, Brian P. ;
Carter, Brett W. ;
Fellman, Bryan M. ;
Mawlawi, Osama ;
Ma, Jingfei ;
Lin, Steven H. .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2018, 102 (04) :996-1001
[9]   Impact of Denoising on Deep-Learning-Based Automatic Segmentation Framework for Breast Cancer Radiotherapy Planning [J].
Im, Jung Ho ;
Lee, Ik Jae ;
Choi, Yeonho ;
Sung, Jiwon ;
Ha, Jin Sook ;
Lee, Ho .
CANCERS, 2022, 14 (15)
[10]   Diffusion-weighted MRI in the body: Applications and challenges in oncology [J].
Koh, Dow-Mu ;
Collins, David J. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2007, 188 (06) :1622-1635