Improved estimation of hazard function when failure information is missing not at random

被引:0
|
作者
Chen, Feifei [1 ]
Zhang, Wangxing [2 ]
Sun, Zhihua [3 ,4 ]
Guo, Yuanyuan [3 ]
机构
[1] Beijing Normal Univ, Ctr Stat & Data Sci, Zhuhai, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Missing not at random; random censorship; hazard function; bandwidth selection; REGRESSION-COEFFICIENTS; CENSORED-DATA; INDICATORS; MODEL; DENSITY;
D O I
10.1080/10485252.2023.2219787
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hazard function plays a crucial role in survival analysis. Its estimation has garnered a lot of attention when the survival time variable suffers from right-censoring. Most of the existing works focus on the cases that failure information is complete or missing at random (MAR). When the censoring information is missing not at random (MNAR), statistical inferences on hazard function are very challenging. In this study, estimation of hazard function is addressed under the MNAR mechanism of the failure information. Three estimators are proposed by employing the techniques of correcting biases and adjusting weighting probabilities. These estimators are validated to be consistent and asymptotically normal. Simulation studies and two real-data analyses are performed to assess the proposed methods.
引用
收藏
页码:373 / 399
页数:27
相关论文
共 50 条
  • [31] Nonparametric estimation of the conditional survival function for bivariate failure times
    Lakhal-Chaieb, Lajmi
    Abdous, Belkacem
    Duchesne, Thierry
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2013, 41 (03): : 439 - 452
  • [32] Do people treat missing information adaptively when making inferences?
    Garcia-Retamero, Rocio
    Rieskamp, Joerg
    QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 2009, 62 (10): : 1991 - 2013
  • [33] On the estimation of survival function under random censorship
    Rossa, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2002, 31 (06) : 961 - 975
  • [34] The least squares type estimation of the parameters in the power hazard function
    Mugdadi, AR
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 169 (02) : 737 - 748
  • [35] Nonparametric estimation of the hazard function under dependence conditions.
    Estévez-Pérez, G
    Quintela-del-Río, A
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1999, 28 (10) : 2297 - 2331
  • [36] A local linear estimation of conditional hazard function in censored data
    Kim, Choongrak
    Oh, Minkyung
    Yang, Seong J.
    Choi, Hyemi
    JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2010, 39 (03) : 347 - 355
  • [37] Improved Hazard Ratio Estimation with Tied Event Times in Small Trials
    Mehrotra, Devan V.
    Roth, Arthur J.
    STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2011, 3 (03): : 456 - 462
  • [38] Testing for linearity in scalar-on-function regression with responses missing at random
    Febrero-Bande, Manuel
    Galeano, Pedro
    Garcia-Portugues, Eduardo
    Gonzalez-Manteiga, Wenceslao
    COMPUTATIONAL STATISTICS, 2024, 39 (06) : 3405 - 3429
  • [39] Estimation of genetic risk function with covariates in the presence of missing genotypes
    Lee, Annie J.
    Marder, Karen
    Alcalay, Roy N.
    Mejia-Santana, Helen
    Orr-Urtreger, Avi
    Giladi, Nir
    Bressman, Susan
    Wang, Yuanjia
    STATISTICS IN MEDICINE, 2017, 36 (22) : 3533 - 3546
  • [40] Semiparametric Estimation in the Proportional Hazard Model Accounting for a Misclassified Cause of Failure
    Ha, Jinkyung
    Tsodikov, Alexander
    BIOMETRICS, 2015, 71 (04) : 941 - 949