Improved estimation of hazard function when failure information is missing not at random

被引:0
|
作者
Chen, Feifei [1 ]
Zhang, Wangxing [2 ]
Sun, Zhihua [3 ,4 ]
Guo, Yuanyuan [3 ]
机构
[1] Beijing Normal Univ, Ctr Stat & Data Sci, Zhuhai, Peoples R China
[2] Beijing Normal Univ, Sch Math Sci, Beijing, Peoples R China
[3] Univ Chinese Acad Sci, Sch Math Sci, Beijing, Peoples R China
[4] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Missing not at random; random censorship; hazard function; bandwidth selection; REGRESSION-COEFFICIENTS; CENSORED-DATA; INDICATORS; MODEL; DENSITY;
D O I
10.1080/10485252.2023.2219787
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Hazard function plays a crucial role in survival analysis. Its estimation has garnered a lot of attention when the survival time variable suffers from right-censoring. Most of the existing works focus on the cases that failure information is complete or missing at random (MAR). When the censoring information is missing not at random (MNAR), statistical inferences on hazard function are very challenging. In this study, estimation of hazard function is addressed under the MNAR mechanism of the failure information. Three estimators are proposed by employing the techniques of correcting biases and adjusting weighting probabilities. These estimators are validated to be consistent and asymptotically normal. Simulation studies and two real-data analyses are performed to assess the proposed methods.
引用
收藏
页码:373 / 399
页数:27
相关论文
共 50 条
  • [21] Local quasi-likelihood estimation with data missing at random
    Chen, Jianwei
    Fan, Jianqing
    Li, Kim-Hung
    Zhou, Haibo
    STATISTICA SINICA, 2006, 16 (04) : 1071 - 1100
  • [22] Estimation of stochastic signals under partially missing information
    Torokhti, Anatoli
    Howlett, Phil
    Laga, Hamid
    SIGNAL PROCESSING, 2015, 111 : 199 - 209
  • [23] Sensitivity Analysis of Multiple Informant Models When Data Are Not Missing at Random
    Blozis, Shelley A.
    Ge, Xiaojia
    Xu, Shu
    Natsuaki, Misaki N.
    Shaw, Daniel S.
    Neiderhiser, Jenae M.
    Scaramella, Laura V.
    Leve, Leslie D.
    Reiss, David
    STRUCTURAL EQUATION MODELING-A MULTIDISCIPLINARY JOURNAL, 2013, 20 (02) : 283 - 298
  • [24] Distribution function estimation via Bernstein polynomial of random degree
    Dutta, Santanu
    METRIKA, 2016, 79 (03) : 239 - 263
  • [25] Estimation in change-point hazard function models
    Wu, CQ
    Zhao, LC
    Wu, YH
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (01) : 41 - 48
  • [26] Hazard-based nonparametric survivor function estimation
    Prentice, RL
    Moodie, FZ
    Wu, JR
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2004, 66 : 305 - 319
  • [27] Hazard function and characterizations on distribution tails of nonnegative random variables
    Fengyang Cheng
    Yuebao Wang
    Applied Mathematics-A Journal of Chinese Universities, 2003, 18 (3) : 287 - 293
  • [28] HAZARD FUNCTION AND CHARACTERIZATIONS ON DISTRIBUTION TAILS OF NONNEGATIVE RANDOM VARIABLES
    Cheng Fengyang Wang YuebaoSchool of Math. Sci.
    Applied Mathematics:A Journal of Chinese Universities, 2003, (03) : 287 - 293
  • [29] Non-parametric estimation for the location of a change-point in an otherwise smooth hazard function under random censoring
    Antoniadis, A
    Gijbels, I
    Macgibbon, B
    SCANDINAVIAN JOURNAL OF STATISTICS, 2000, 27 (03) : 501 - 519
  • [30] Kernel smoothing density estimation when group membership is subject to missing
    Tang, Wan
    He, Hua
    Gunzler, Douglas
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2012, 142 (03) : 685 - 694