Mixed Virtual Element approximation of linear acoustic wave equation

被引:2
作者
Dassi, Franco [1 ]
Fumagalli, Alessio [2 ]
Mazzieri, Ilario [2 ]
Vacca, Giuseppe [3 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicazioni, Via R Cozzi 55, I-20125 Milan, Italy
[2] Politecn Milan, MOX Dipartimento Matemat, Pza L da Vinci 32, I-20133 Milan, Italy
[3] Univ Bari, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
关键词
Mixed Virtual Elements; acoustics wave equations; polygonal meshes; energy conservation; DISCONTINUOUS GALERKIN METHOD; 2ND-ORDER ELLIPTIC PROBLEMS; HYBRID HIGH-ORDER; FINITE-ELEMENTS; PROPAGATION; CONVERGENCE; STABILITY;
D O I
10.1093/imanum/drad078
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We design a Mixed Virtual Element Method for the approximated solution to the first-order form of the acoustic wave equation. In the absence of external loads, the semi-discrete method exactly conserves the system energy. To integrate in time the semi-discrete problem we consider a classical $\theta $-method scheme. We carry out the stability and convergence analysis in the energy norm for the semi-discrete problem showing an optimal rate of convergence with respect to the mesh size. We further study the property of energy conservation for the fully-discrete system. Finally, we present some verification tests as well as engineering applications of the method.
引用
收藏
页码:2864 / 2891
页数:28
相关论文
共 71 条
[1]  
Adams R.A., 2003, Pure and Applied Mathematics, V140
[2]   High-order Discontinuous Galerkin methods for the elastodynamics equation on polygonal and polyhedral meshes [J].
Antonietti, P. F. ;
Mazzieri, I. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 342 :414-437
[3]   A C1 VIRTUAL ELEMENT METHOD FOR THE CAHN-HILLIARD EQUATION WITH POLYGONAL MESHES [J].
Antonietti, P. F. ;
Da Veiga, L. Beirao ;
Scacchi, S. ;
Verani, M. .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (01) :34-56
[4]   Non-conforming high order approximations of the elastodynamics equation [J].
Antonietti, P. F. ;
Mazzieri, I. ;
Quarteroni, A. ;
Rapetti, F. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2012, 209 :212-238
[5]   The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis [J].
Antonietti, Paola F. ;
Manzini, Gianmarco ;
Mazzieri, Ilario ;
Mourad, Hashem M. ;
Verani, Marco .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2021, 122 (04) :934-971
[6]   A high-order discontinuous Galerkin method for nonlinear sound waves [J].
Antonietti, Paola F. ;
Mazzieri, Ilario ;
Muhr, Markus ;
Nikolic, Vanja ;
Wohlmuth, Barbara .
JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 415
[7]   A high-order discontinuous Galerkin approach to the elasto-acoustic problem [J].
Antonietti, Paola F. ;
Bonaldi, Francesco ;
Mazzieri, Ilario .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 358
[8]   High order discontinuous Galerkin methods on simplicial elements for the elastodynamics equation [J].
Antonietti, Paola F. ;
Marcati, Carlo ;
Mazzieri, Ilario ;
Quarteroni, Alfio .
NUMERICAL ALGORITHMS, 2016, 71 (01) :181-206
[9]   Quadrilateral H(div) finite elements [J].
Arnold, DN ;
Boffi, D ;
Falk, RS .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2005, 42 (06) :2429-2451
[10]   A stress/displacement Virtual Element method for plane elasticity problems [J].
Artioli, E. ;
de Miranda, S. ;
Lovadina, C. ;
Patruno, L. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 325 :155-174